Periodic Boundary-Value Problem for a Rayleigh-Type Equation Unsolved with Respect to the Derivative

Pub Date : 2024-04-06 DOI:10.1007/s11253-024-02282-2
{"title":"Periodic Boundary-Value Problem for a Rayleigh-Type Equation Unsolved with Respect to the Derivative","authors":"","doi":"10.1007/s11253-024-02282-2","DOIUrl":null,"url":null,"abstract":"<p>We establish constructive necessary and sufficient conditions of solvability and propose a scheme for the construction of solutions to a nonautonomous nonlinear periodic boundary-value problem for a Rayleightype equation unsolved with respect to the derivative. The urgency of investigation of nonautonomous boundary-value problems unsolved with respect to the derivative is explained by the fact that the analysis of traditional problems solved with respect to the derivative is sometimes significantly complicated, e.g., in the presence of nonlinearities that are not integrable in elementary functions. We consider the critical case in which the equation for generating amplitudes of a weakly nonlinear periodic boundary-value problem for a Rayleigh-type equation does not turn into the identity. The least-squares method is used to establish constructive conditions for the solvability and propose convergent iterative schemes for the construction of approximate solutions to a nonautonomous nonlinear boundary-value problem unsolved with respect to the derivative. As an example of application of the proposed iterative scheme, we find approximations to the solutions of periodic boundary-value problems unsolved with respect to the derivative in the case of periodic problem for the equation that describes the motion of a satellite on the elliptic orbit. We obtain an estimate for the range of values of a small parameter in which the iterative procedure used for the construction of solutions to a weakly nonlinear periodic boundary-value problem for a Rayleigh-type equation unsolved with respect to the derivative is convergent. To check the accuracy of the proposed approximations, we estimate the discrepancies appearing in the equation used to simulate the motion of satellites along the elliptic orbits.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02282-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish constructive necessary and sufficient conditions of solvability and propose a scheme for the construction of solutions to a nonautonomous nonlinear periodic boundary-value problem for a Rayleightype equation unsolved with respect to the derivative. The urgency of investigation of nonautonomous boundary-value problems unsolved with respect to the derivative is explained by the fact that the analysis of traditional problems solved with respect to the derivative is sometimes significantly complicated, e.g., in the presence of nonlinearities that are not integrable in elementary functions. We consider the critical case in which the equation for generating amplitudes of a weakly nonlinear periodic boundary-value problem for a Rayleigh-type equation does not turn into the identity. The least-squares method is used to establish constructive conditions for the solvability and propose convergent iterative schemes for the construction of approximate solutions to a nonautonomous nonlinear boundary-value problem unsolved with respect to the derivative. As an example of application of the proposed iterative scheme, we find approximations to the solutions of periodic boundary-value problems unsolved with respect to the derivative in the case of periodic problem for the equation that describes the motion of a satellite on the elliptic orbit. We obtain an estimate for the range of values of a small parameter in which the iterative procedure used for the construction of solutions to a weakly nonlinear periodic boundary-value problem for a Rayleigh-type equation unsolved with respect to the derivative is convergent. To check the accuracy of the proposed approximations, we estimate the discrepancies appearing in the equation used to simulate the motion of satellites along the elliptic orbits.

分享
查看原文
雷利型方程的周期性边值问题未解决的导数问题
我们建立了可解性的构造性必要条件和充分条件,并提出了一种方案,用于构建未解决导数问题的雷莱方程的非自治非线性周期性边界值问题的解。研究关于导数的非自治边界值问题的紧迫性在于,对关于导数的传统问题的分析有时非常复杂,例如,在存在基本函数不可积分的非线性的情况下。我们考虑了弱非线性周期性边界值问题的雷利型方程的振幅生成方程不转化为等式的临界情况。我们利用最小二乘法建立了可解性的构造条件,并提出了收敛迭代方案,用于构建导数方面未解决的非自治非线性边界值问题的近似解。作为所提迭代方案的应用实例,我们以描述卫星在椭圆轨道上运动的方程的周期性问题为例,找到了在导数方面未解决的周期性边界值问题的近似解。我们获得了一个小参数值范围的估计值,在这个范围内,用于构建未解决导数问题的雷利型方程的弱非线性周期性边界值问题解的迭代程序是收敛的。为了验证所提近似值的准确性,我们估算了用于模拟卫星沿椭圆轨道运动的方程中出现的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信