Shikhah Almutairi, Nawal A. Alarfaj, Adibah M. Almutairi, Maha F. El-Tohamy
{"title":"Exploiting of Green Synthesized Metal Oxide Nanoparticles in the Potentiometric Determination of Metformin Hydrochloride in Pharmaceutical Products","authors":"Shikhah Almutairi, Nawal A. Alarfaj, Adibah M. Almutairi, Maha F. El-Tohamy","doi":"10.1155/2024/8354311","DOIUrl":null,"url":null,"abstract":"The advanced and highly functional properties of Al<sub>2</sub>O<sub>3</sub> and NiO nanoparticles promote the widespread use of metal oxides as remarkable electroactive materials for sensing and electrochemical applications. The proposed study describes a comparison of the sensitivity and selectivity of two modified wire membrane sensors enriched with Al<sub>2</sub>O<sub>3</sub> and NiO nanoparticles with conventional wire membranes for the quantification of the antidiabetic drug metformin hydrochloride (MTF). The results show linear relationships of the enriched Al<sub>2</sub>O<sub>3</sub> and NiO nanosensors over the concentration ranges 1.0 × 10<sup>−10</sup>–1.0 × 10<sup>−2</sup> mol L<sup>−1</sup> and 1.0 × 10<sup>−6</sup>–1.0 × 10<sup>−2</sup> M for both the modified sensors and the conventional coated wire membrane sensors. The regression equations were <svg height=\"11.9087pt\" style=\"vertical-align:-3.2728pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 21.614 11.9087\" width=\"21.614pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.943,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,14.537,3.132)\"></path></g></svg> = (52.1 ± 0.5) log (MTF) + 729 for enriched nanometallic oxides, <svg height=\"11.9087pt\" style=\"vertical-align:-3.2728pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 21.614 11.9087\" width=\"21.614pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-70\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.943,3.132)\"><use xlink:href=\"#g190-110\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,14.537,3.132)\"><use xlink:href=\"#g190-87\"></use></g></svg> = (57.04 ± 0.4) log (MTF) + 890.66, and <svg height=\"11.9087pt\" style=\"vertical-align:-3.2728pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 21.614 11.9087\" width=\"21.614pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-70\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.943,3.132)\"><use xlink:href=\"#g190-110\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,14.537,3.132)\"><use xlink:href=\"#g190-87\"></use></g></svg> = (58.27 ± 0.7) log (MTF) + 843.27 with correlation coefficients of 0.9991, 0.9997, and 0.9998 for the aforementioned sensors, respectively. The proposed method was fully validated with respect to the recommendations of the International Union of Pure and Applied Chemistry (IUPAC). The newly functionalized sensors have been successfully used for the determination of MTF in its commercial products.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/8354311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The advanced and highly functional properties of Al2O3 and NiO nanoparticles promote the widespread use of metal oxides as remarkable electroactive materials for sensing and electrochemical applications. The proposed study describes a comparison of the sensitivity and selectivity of two modified wire membrane sensors enriched with Al2O3 and NiO nanoparticles with conventional wire membranes for the quantification of the antidiabetic drug metformin hydrochloride (MTF). The results show linear relationships of the enriched Al2O3 and NiO nanosensors over the concentration ranges 1.0 × 10−10–1.0 × 10−2 mol L−1 and 1.0 × 10−6–1.0 × 10−2 M for both the modified sensors and the conventional coated wire membrane sensors. The regression equations were = (52.1 ± 0.5) log (MTF) + 729 for enriched nanometallic oxides, = (57.04 ± 0.4) log (MTF) + 890.66, and = (58.27 ± 0.7) log (MTF) + 843.27 with correlation coefficients of 0.9991, 0.9997, and 0.9998 for the aforementioned sensors, respectively. The proposed method was fully validated with respect to the recommendations of the International Union of Pure and Applied Chemistry (IUPAC). The newly functionalized sensors have been successfully used for the determination of MTF in its commercial products.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.