The mechanism of CO2 hydrogenation to CH3OH on MZrOx (M = Ga, Cr) solid-solution catalysts and effects of lattice strain†

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Huili Lu , Deshuai Yang , Zhao-Xu Chen
{"title":"The mechanism of CO2 hydrogenation to CH3OH on MZrOx (M = Ga, Cr) solid-solution catalysts and effects of lattice strain†","authors":"Huili Lu ,&nbsp;Deshuai Yang ,&nbsp;Zhao-Xu Chen","doi":"10.1039/d4cy00024b","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> hydrogenation to methanol is an effective way to convert CO<sub>2</sub> into useful chemicals and fuel. Recently, some of metal-doped zirconia solid-solutions exhibit high selectivity and activity for CO<sub>2</sub> hydrogenation to methanol. Herein, we report a mechanistic study of the process on MZrO<sub>x</sub> (M = Ga, Cr) using density functional calculations and microkinetic simulations. It is found that the pathway for methanol formation is <figure><img></figure> → COOH* → HCOOH* → CHO* → CH<sub>2</sub>O* → CH<sub>2</sub>OH* → CH<sub>3</sub>OH* and HCOOH* → CHO* + OH* is the rate-controlling step on both catalysts. The calculated methanol selectivity agrees with the experimental results very well, supporting the mechanism identified. Investigations show that the influence of strain on reaction kinetics and thermodynamics is not “black or white”: while compressive strain greatly promotes the activity and selectivity of GaZrO<sub>x</sub>, both tensile and compressive strains suppress the catalytic performance of CrZrO<sub>x</sub>. Analysis also reveals that there is a good transition state scaling (TSS) relation and strain tends to degrade the linear correlation. Furthermore, the error of the predicted barriers using the TSS relation is relatively large, indicating that cautions should be taken when applying TSS relations to estimate barriers.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 10","pages":"Pages 2761-2771"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324002466","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 hydrogenation to methanol is an effective way to convert CO2 into useful chemicals and fuel. Recently, some of metal-doped zirconia solid-solutions exhibit high selectivity and activity for CO2 hydrogenation to methanol. Herein, we report a mechanistic study of the process on MZrOx (M = Ga, Cr) using density functional calculations and microkinetic simulations. It is found that the pathway for methanol formation is

→ COOH* → HCOOH* → CHO* → CH2O* → CH2OH* → CH3OH* and HCOOH* → CHO* + OH* is the rate-controlling step on both catalysts. The calculated methanol selectivity agrees with the experimental results very well, supporting the mechanism identified. Investigations show that the influence of strain on reaction kinetics and thermodynamics is not “black or white”: while compressive strain greatly promotes the activity and selectivity of GaZrOx, both tensile and compressive strains suppress the catalytic performance of CrZrOx. Analysis also reveals that there is a good transition state scaling (TSS) relation and strain tends to degrade the linear correlation. Furthermore, the error of the predicted barriers using the TSS relation is relatively large, indicating that cautions should be taken when applying TSS relations to estimate barriers.

Abstract Image

Abstract Image

MZrOx (M = Ga, Cr) 固溶体催化剂将 CO2 加氢转化为 CH3OH 的机理及晶格应变的影响
将二氧化碳加氢转化为甲醇是将二氧化碳转化为有用化学品和燃料的有效方法。最近,一些掺杂金属的氧化锆固溶体在二氧化碳加氢制甲醇过程中表现出了高选择性和高活性。在此,我们利用密度泛函计算和微动力学模拟对 MZrOx(M = Ga、Cr)上的这一过程进行了机理研究。研究发现,甲醇形成的途径是 → COOH* → HCOOH* → CHO* → CH2O* → CH2OH* → CH3OH*,而 HCOOH* → CHO* + OH* 是两种催化剂上的速率控制步骤。计算得出的甲醇选择性与实验结果非常吻合,支持了所确定的机理。研究表明,应变对反应动力学和热力学的影响并非 "非黑即白":压缩应变极大地促进了 GaZrOx 的活性和选择性,而拉伸和压缩应变则抑制了 CrZrOx 的催化性能。分析还显示,存在良好的过渡态比例(TSS)关系,而应变往往会降低线性相关性。此外,使用 TSS 关系预测的势垒误差相对较大,这表明在应用 TSS 关系估算势垒时应小心谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信