Regularized Latent Trajectory Models for Spatio-temporal Population Dynamics

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinyi Lu, Yoichiro Kanno, George P. Valentine, Matt A. Kulp, Mevin B. Hooten
{"title":"Regularized Latent Trajectory Models for Spatio-temporal Population Dynamics","authors":"Xinyi Lu, Yoichiro Kanno, George P. Valentine, Matt A. Kulp, Mevin B. Hooten","doi":"10.1007/s13253-024-00616-y","DOIUrl":null,"url":null,"abstract":"<p>Climate change impacts ecosystems variably in space and time. Landscape features may confer resistance against environmental stressors, whose intensity and frequency also depend on local weather patterns. Characterizing spatio-temporal variation in population responses to these stressors improves our understanding of what constitutes climate change refugia. We developed a Bayesian hierarchical framework that allowed us to differentiate population responses to seasonal weather patterns depending on their “sensitive” or “resilient” states. The framework inferred these sensitivity states based on latent trajectories delineating dynamic state probabilities. The latent trajectories are composed of linear initial conditions, functional regression models, and additive random effects representing ecological mechanisms such as topological buffering and effects of legacy weather conditions. Further, we developed a Bayesian regularization strategy that promoted temporal coherence in the inferred states. We demonstrated our hierarchical framework and regularization strategy using simulated examples and a case study of native brook trout (<i>Salvelinus fontinalis</i>) count data from the Great Smoky Mountains National Park, southeastern USA. Our study provided insights into ecological processes influencing brook trout sensitivity. Our framework can also be applied to other species and ecosystems to facilitate management and conservation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00616-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change impacts ecosystems variably in space and time. Landscape features may confer resistance against environmental stressors, whose intensity and frequency also depend on local weather patterns. Characterizing spatio-temporal variation in population responses to these stressors improves our understanding of what constitutes climate change refugia. We developed a Bayesian hierarchical framework that allowed us to differentiate population responses to seasonal weather patterns depending on their “sensitive” or “resilient” states. The framework inferred these sensitivity states based on latent trajectories delineating dynamic state probabilities. The latent trajectories are composed of linear initial conditions, functional regression models, and additive random effects representing ecological mechanisms such as topological buffering and effects of legacy weather conditions. Further, we developed a Bayesian regularization strategy that promoted temporal coherence in the inferred states. We demonstrated our hierarchical framework and regularization strategy using simulated examples and a case study of native brook trout (Salvelinus fontinalis) count data from the Great Smoky Mountains National Park, southeastern USA. Our study provided insights into ecological processes influencing brook trout sensitivity. Our framework can also be applied to other species and ecosystems to facilitate management and conservation.

用于时空种群动力学的正则化潜在轨迹模型
气候变化在空间和时间上对生态系统的影响各不相同。地貌特征可能会带来对环境压力的抵抗力,而环境压力的强度和频率也取决于当地的天气模式。描述种群对这些压力因子的反应的时空变化,有助于我们更好地理解什么是气候变化避难所。我们开发了一个贝叶斯分层框架,使我们能够根据 "敏感 "或 "复原 "状态来区分种群对季节性天气模式的反应。该框架根据划定动态状态概率的潜在轨迹来推断这些敏感状态。潜在轨迹由线性初始条件、函数回归模型和代表生态机制(如拓扑缓冲和遗留天气条件的影响)的加法随机效应组成。此外,我们还开发了一种贝叶斯正则化策略,以促进推断状态的时间一致性。我们利用模拟实例和美国东南部大烟山国家公园的本地溪鳟(Salvelinus fontinalis)计数数据案例研究,展示了我们的分层框架和正则化策略。我们的研究为了解影响鳟鱼敏感性的生态过程提供了见解。我们的框架也可应用于其他物种和生态系统,以促进管理和保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信