Chirped optical solitons for the complex Ginzburg–Landau equation with Hamiltonian perturbations and Kerr law nonlinearity

Ming-Yue Tang, Tong-Yu Meng
{"title":"Chirped optical solitons for the complex Ginzburg–Landau equation with Hamiltonian perturbations and Kerr law nonlinearity","authors":"Ming-Yue Tang, Tong-Yu Meng","doi":"10.1515/zna-2023-0356","DOIUrl":null,"url":null,"abstract":"What the motivation of this paper is to provide chirped optical solitons for the complex Ginzburg–Landau equation with Hamiltonian perturbations and Kerr law nonlinearity. We get 19 exact chirped solutions by utilizing trial equation method and the complete discriminant system for polynomial method, which are richer than the solutions acquired in existing papers. We draw the two-dimensional graphs of amplitudes and corresponding chirps in order to verify the existence of the solutions and discuss the dynamical properties of the solutions. To our knowledge, this is the first time that comprehensive set of exact chirped solutions of the governing equation in the paper are obtained. The model and the results obtained in this paper may help explain some nonlinear problems.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

What the motivation of this paper is to provide chirped optical solitons for the complex Ginzburg–Landau equation with Hamiltonian perturbations and Kerr law nonlinearity. We get 19 exact chirped solutions by utilizing trial equation method and the complete discriminant system for polynomial method, which are richer than the solutions acquired in existing papers. We draw the two-dimensional graphs of amplitudes and corresponding chirps in order to verify the existence of the solutions and discuss the dynamical properties of the solutions. To our knowledge, this is the first time that comprehensive set of exact chirped solutions of the governing equation in the paper are obtained. The model and the results obtained in this paper may help explain some nonlinear problems.
具有哈密顿扰动和克尔定律非线性的复杂金兹堡-朗道方程的啁啾光学孤子
本文的动机是为具有哈密顿扰动和克尔定律非线性的复杂金兹堡-朗道方程提供啁啾光孤子。我们利用试方程方法和多项式方法的完整判别式系统得到了 19 个精确的啁啾解,比现有论文中得到的解更加丰富。为了验证解的存在性,我们绘制了振幅和相应啁啾的二维图,并讨论了解的动力学性质。据我们所知,这是首次获得论文中控制方程的一整套精确啁啾解。本文的模型和结果可能有助于解释一些非线性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信