Machine Learning for Maximizing the Memristivity of Single and Coupled Quantum Memristors

Carlos Hernani‐Morales, Gabriel Alvarado, Francisco Albarrán‐Arriagada, Yolanda Vives‐Gilabert, Enrique Solano, José D. Martín‐Guerrero
{"title":"Machine Learning for Maximizing the Memristivity of Single and Coupled Quantum Memristors","authors":"Carlos Hernani‐Morales, Gabriel Alvarado, Francisco Albarrán‐Arriagada, Yolanda Vives‐Gilabert, Enrique Solano, José D. Martín‐Guerrero","doi":"10.1002/qute.202300294","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) methods are proposed to characterize the memristive properties of single and coupled quantum memristors. It is shown that maximizing the memristivity leads to large values in the degree of entanglement of two quantum memristors, unveiling the close relationship between quantum correlations and memory. The results strengthen the possibility of using quantum memristors as key components of neuromorphic quantum computing.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) methods are proposed to characterize the memristive properties of single and coupled quantum memristors. It is shown that maximizing the memristivity leads to large values in the degree of entanglement of two quantum memristors, unveiling the close relationship between quantum correlations and memory. The results strengthen the possibility of using quantum memristors as key components of neuromorphic quantum computing.
通过机器学习最大化单个和耦合量子晶体记忆器的记忆性
本文提出了机器学习(ML)方法来描述单个和耦合量子忆阻器的忆阻特性。结果表明,忆阻性最大化会导致两个量子忆阻器的纠缠程度达到较大值,从而揭示了量子相关性与记忆之间的密切关系。研究结果加强了将量子忆阻器用作神经形态量子计算关键组件的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信