APPROXIMATION OF IRRATIONAL NUMBERS BY PAIRS OF INTEGERS FROM A LARGE SET

IF 0.6 4区 数学 Q3 MATHEMATICS
ARTŪRAS DUBICKAS
{"title":"APPROXIMATION OF IRRATIONAL NUMBERS BY PAIRS OF INTEGERS FROM A LARGE SET","authors":"ARTŪRAS DUBICKAS","doi":"10.1017/s0004972724000194","DOIUrl":null,"url":null,"abstract":"We show that there is a set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline1.png\" /> <jats:tex-math> $S \\subseteq {\\mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with lower density arbitrarily close to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline2.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, for each sufficiently large real number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline3.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the inequality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline4.png\" /> <jats:tex-math> $|m\\alpha -n| \\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> holds for every pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline5.png\" /> <jats:tex-math> $(m,n) \\in S^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. On the other hand, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline6.png\" /> <jats:tex-math> $S \\subseteq {\\mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline7.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then, for each irrational <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline8.png\" /> <jats:tex-math> $\\alpha&gt;0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any positive <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline9.png\" /> <jats:tex-math> $\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exist <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline10.png\" /> <jats:tex-math> $m,n \\in S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline11.png\" /> <jats:tex-math> $|m\\alpha -n|&lt;\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000194","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that there is a set $S \subseteq {\mathbb N}$ with lower density arbitrarily close to $1$ such that, for each sufficiently large real number $\alpha $ , the inequality $|m\alpha -n| \geq 1$ holds for every pair $(m,n) \in S^2$ . On the other hand, if $S \subseteq {\mathbb N}$ has density $1$ , then, for each irrational $\alpha>0$ and any positive $\varepsilon $ , there exist $m,n \in S$ for which $|m\alpha -n|<\varepsilon $ .
用大集中的成对整数逼近无理数
我们证明,有一个集合$S (subseteq {\mathbb N}$的低密度任意地接近于$1$,这样,对于每个足够大的实数$\alpha $,不等式$|m\alpha -n| \geq 1$对于S^2$中的每一对$(m,n) \都成立。另一方面,如果 $S \subseteq {\mathbb N}$ 的密度为 $1$,那么,对于每个无理数 $\alpha>0$ 和任何正的 $\varepsilon $,在 S$ 中存在 $m,n,其中 $|m\alpha -n|<\varepsilon $ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信