{"title":"APPROXIMATION OF IRRATIONAL NUMBERS BY PAIRS OF INTEGERS FROM A LARGE SET","authors":"ARTŪRAS DUBICKAS","doi":"10.1017/s0004972724000194","DOIUrl":null,"url":null,"abstract":"We show that there is a set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline1.png\" /> <jats:tex-math> $S \\subseteq {\\mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with lower density arbitrarily close to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline2.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, for each sufficiently large real number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline3.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the inequality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline4.png\" /> <jats:tex-math> $|m\\alpha -n| \\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> holds for every pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline5.png\" /> <jats:tex-math> $(m,n) \\in S^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. On the other hand, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline6.png\" /> <jats:tex-math> $S \\subseteq {\\mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline7.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then, for each irrational <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline8.png\" /> <jats:tex-math> $\\alpha>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any positive <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline9.png\" /> <jats:tex-math> $\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exist <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline10.png\" /> <jats:tex-math> $m,n \\in S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline11.png\" /> <jats:tex-math> $|m\\alpha -n|<\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000194","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that there is a set $S \subseteq {\mathbb N}$ with lower density arbitrarily close to $1$ such that, for each sufficiently large real number $\alpha $ , the inequality $|m\alpha -n| \geq 1$ holds for every pair $(m,n) \in S^2$ . On the other hand, if $S \subseteq {\mathbb N}$ has density $1$ , then, for each irrational $\alpha>0$ and any positive $\varepsilon $ , there exist $m,n \in S$ for which $|m\alpha -n|<\varepsilon $ .
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society