{"title":"MIMIC: Misogyny Identification in Multimodal Internet Content in Hindi-English Code-Mixed Language","authors":"Aakash Singh, Deepawali Sharma, Vivek Kumar Singh","doi":"10.1145/3656169","DOIUrl":null,"url":null,"abstract":"<p>Over the years, social media has emerged as one of the most popular platforms where people express their views and share thoughts about various aspects. The social media content now includes a variety of components such as text, images, videos etc. One type of interest is memes, which often combine text and images. It is relevant to mention here that, social media being an unregulated platform, sometimes also has instances of discriminatory, offensive and hateful content being posted. Such content adversely affects the online well-being of the users. Therefore, it is very important to develop computational models to automatically detect such content so that appropriate corrective action can be taken. Accordingly, there have been research efforts on automatic detection of such content focused mainly on the texts. However, the fusion of multimodal data (as in memes) creates various challenges in developing computational models that can handle such data, more so in the case of low-resource languages. Among such challenges, the lack of suitable datasets for developing computational models for handling memes in low-resource languages is a major problem. This work attempts to bridge the research gap by providing a large-sized curated dataset comprising 5,054 memes in Hindi-English code-mixed language, which are manually annotated by three independent annotators. It comprises two subtasks: (i) Subtask-1 (Binary classification involving tagging a meme as misogynous or non-misogynous), and (ii) Subtask-2 (multi-label classification of memes into different categories). The data quality is evaluated by computing Krippendorff's alpha. Different computational models are then applied on the data in three settings: text-only, image-only, and multimodal models using fusion techniques. The results show that the proposed multimodal method using the fusion technique may be the preferred choice for the identification of misogyny in multimodal Internet content and that the dataset is suitable for advancing research and development in the area.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"36 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656169","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Over the years, social media has emerged as one of the most popular platforms where people express their views and share thoughts about various aspects. The social media content now includes a variety of components such as text, images, videos etc. One type of interest is memes, which often combine text and images. It is relevant to mention here that, social media being an unregulated platform, sometimes also has instances of discriminatory, offensive and hateful content being posted. Such content adversely affects the online well-being of the users. Therefore, it is very important to develop computational models to automatically detect such content so that appropriate corrective action can be taken. Accordingly, there have been research efforts on automatic detection of such content focused mainly on the texts. However, the fusion of multimodal data (as in memes) creates various challenges in developing computational models that can handle such data, more so in the case of low-resource languages. Among such challenges, the lack of suitable datasets for developing computational models for handling memes in low-resource languages is a major problem. This work attempts to bridge the research gap by providing a large-sized curated dataset comprising 5,054 memes in Hindi-English code-mixed language, which are manually annotated by three independent annotators. It comprises two subtasks: (i) Subtask-1 (Binary classification involving tagging a meme as misogynous or non-misogynous), and (ii) Subtask-2 (multi-label classification of memes into different categories). The data quality is evaluated by computing Krippendorff's alpha. Different computational models are then applied on the data in three settings: text-only, image-only, and multimodal models using fusion techniques. The results show that the proposed multimodal method using the fusion technique may be the preferred choice for the identification of misogyny in multimodal Internet content and that the dataset is suitable for advancing research and development in the area.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.