Some questions about complex harmonic functions

Luis E. Benítez-Babilonia, Raúl Felipe
{"title":"Some questions about complex harmonic functions","authors":"Luis E. Benítez-Babilonia, Raúl Felipe","doi":"10.1007/s00605-024-01956-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of future research. In parallel, we define and study composition operators on a Hardy type space denoted by <span>\\(HH^{2}(\\mathbb {D})\\)</span> of complex harmonic functions also introduced for us in the present work. The symbols of these composition operators have of form <span>\\(\\chi +\\overline{\\pi }\\)</span> where <span>\\(\\chi ,\\pi \\)</span> are analytic functions from <span>\\(\\mathbb {D}\\)</span> into <span>\\(\\mathbb {D}\\)</span>. We also analyze the space of bounded linear operators on <span>\\(HH^{2}(\\mathbb {D})\\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01956-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of future research. In parallel, we define and study composition operators on a Hardy type space denoted by \(HH^{2}(\mathbb {D})\) of complex harmonic functions also introduced for us in the present work. The symbols of these composition operators have of form \(\chi +\overline{\pi }\) where \(\chi ,\pi \) are analytic functions from \(\mathbb {D}\) into \(\mathbb {D}\). We also analyze the space of bounded linear operators on \(HH^{2}(\mathbb {D})\).

关于复调函数的几个问题
在本文中,我们提出了复调函数类中的组成积,从而使两个此类函数的组成再次成为复调函数。由此,我们开始研究该类函数的迭代,并简要展示了其作为未来研究课题的潜力。与此同时,我们定义并研究了复调函数的哈代类型空间上的组成算子,用 \(HH^{2}(\mathbb {D})\ 表示。这些组成算子的符号具有 \(\chi +\overline{pi }\) 的形式,其中 \(\chi ,\pi \) 是从 \(\mathbb {D}\) 到 \(\mathbb {D}\) 的解析函数。我们还分析了 \(HH^{2}(\mathbb {D})\) 上有界线性算子的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信