{"title":"A case of polyglucosan body myopathy caused by an RBCK1 gene variant and literature review","authors":"Qiqing Sun, Zhenhua Xie, Lifang Song, Dapeng Fu","doi":"10.1002/mgg3.2432","DOIUrl":null,"url":null,"abstract":"ObjectiveTo analyze the clinical and genetic characteristics of a patient with Polyglucosan body myopathy 1 (PGBM1) caused by a novel compound heterozygous variant in the <jats:italic>RBCK1</jats:italic> gene.MethodsThe clinical data of the patient were collected, next‐generation sequencing technology was used to determine the exome sequence of the patient, and the suspected pathogenic locus was verified by Sanger sequencing.ResultsThrough whole‐exome sequencing, we found that there were c.919G>T; p. (Glu307*) and c.723_730dup; p. (Glu244fs) variants of the <jats:italic>RBCK1</jats:italic> gene in the patient, inherited from his parents, constituting a compound heterozygous variation. According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), the two variants were rated as pathogenic, but there were no comparable cases. Previous literature reported 24 patients with <jats:italic>RBCK1</jats:italic> gene variants, involving a total of 20 myocardial and 18 skeletal muscle cases.ConclusionsThe patient was twice diagnosed with cardiac insufficiency, neglecting the usual manifestations of muscle weakness, resulting in misdiagnosis. Later, novel variants in the <jats:italic>RBCK1</jats:italic> gene were discovered through whole‐exome sequencing, and symptomatic treatment was given after diagnosis. The importance of whole‐exome sequencing technology in disease diagnosis and genetic counseling was emphasized.","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.2432","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveTo analyze the clinical and genetic characteristics of a patient with Polyglucosan body myopathy 1 (PGBM1) caused by a novel compound heterozygous variant in the RBCK1 gene.MethodsThe clinical data of the patient were collected, next‐generation sequencing technology was used to determine the exome sequence of the patient, and the suspected pathogenic locus was verified by Sanger sequencing.ResultsThrough whole‐exome sequencing, we found that there were c.919G>T; p. (Glu307*) and c.723_730dup; p. (Glu244fs) variants of the RBCK1 gene in the patient, inherited from his parents, constituting a compound heterozygous variation. According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), the two variants were rated as pathogenic, but there were no comparable cases. Previous literature reported 24 patients with RBCK1 gene variants, involving a total of 20 myocardial and 18 skeletal muscle cases.ConclusionsThe patient was twice diagnosed with cardiac insufficiency, neglecting the usual manifestations of muscle weakness, resulting in misdiagnosis. Later, novel variants in the RBCK1 gene were discovered through whole‐exome sequencing, and symptomatic treatment was given after diagnosis. The importance of whole‐exome sequencing technology in disease diagnosis and genetic counseling was emphasized.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.