Xin Fang, Richa Tiwary, Vivian P Nguyen, John H Richburg
{"title":"The Blood-Testis barrier disruption is a prerequisite for Toxicant-Induced peritubular macrophage increases in the testis of peripubertal rats","authors":"Xin Fang, Richa Tiwary, Vivian P Nguyen, John H Richburg","doi":"10.1093/toxsci/kfae043","DOIUrl":null,"url":null,"abstract":"Peritubular macrophages (PTMφ) are predominantly localized near spermatogonial stem cells in the testis. We previously revealed that exposure of peripubertal male Fischer rats to mono-(2-ethylhexyl) phthalate (MEHP) leads to increased PTMφs in the testis. The mechanisms that trigger increases in PTMφs in the testis are poorly understood. However, MEHP exposure is known to both induce spermatocyte apoptosis and to perturb the blood-testis barrier (BTB). This study aims to elucidate the association between the disruption of BTB and the increases of PTMφs in the testis by comparing the effects observed with MEHP to two other testicular toxicants with variable effects on the BTB and subtype of germ cell undergoing apoptosis. Methoxyacetic acid (MAA) acts directly on spermatocytes and does not affect BTB function, while cadmium chloride (CdCl2) induces profound injury to BTB. The results indicated that MAA exposure significantly increased spermatocyte apoptosis, while no significant changes in the numbers of PTMφs in the testis occurred. In contrast, CdCl2 exposure disrupted BTB function and increased the abundance of PTMφs in the testis. To further investigate whether MEHP-induced changes in BTB integrity accounted for the increase in PTMφs, a plasmid for LG3/4/5, the functional component of laminin-alpha 2, was overexpressed in the testis to stabilize BTB integrity before MEHP exposure. The results showed that LG3/4/5 overexpression substantially reduced the ability of MEHP to compromise BTB integrity and prevented the increase in PTMφ numbers after MEHP exposure. These results indicate that BTB disruption is necessary to increase PTMφs in the testis induced by toxicants.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peritubular macrophages (PTMφ) are predominantly localized near spermatogonial stem cells in the testis. We previously revealed that exposure of peripubertal male Fischer rats to mono-(2-ethylhexyl) phthalate (MEHP) leads to increased PTMφs in the testis. The mechanisms that trigger increases in PTMφs in the testis are poorly understood. However, MEHP exposure is known to both induce spermatocyte apoptosis and to perturb the blood-testis barrier (BTB). This study aims to elucidate the association between the disruption of BTB and the increases of PTMφs in the testis by comparing the effects observed with MEHP to two other testicular toxicants with variable effects on the BTB and subtype of germ cell undergoing apoptosis. Methoxyacetic acid (MAA) acts directly on spermatocytes and does not affect BTB function, while cadmium chloride (CdCl2) induces profound injury to BTB. The results indicated that MAA exposure significantly increased spermatocyte apoptosis, while no significant changes in the numbers of PTMφs in the testis occurred. In contrast, CdCl2 exposure disrupted BTB function and increased the abundance of PTMφs in the testis. To further investigate whether MEHP-induced changes in BTB integrity accounted for the increase in PTMφs, a plasmid for LG3/4/5, the functional component of laminin-alpha 2, was overexpressed in the testis to stabilize BTB integrity before MEHP exposure. The results showed that LG3/4/5 overexpression substantially reduced the ability of MEHP to compromise BTB integrity and prevented the increase in PTMφ numbers after MEHP exposure. These results indicate that BTB disruption is necessary to increase PTMφs in the testis induced by toxicants.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.