Well-posedness and non-uniform dependence on initial data for the Fornberg–Whitham-type equation in Besov spaces

Xueyuan Qi
{"title":"Well-posedness and non-uniform dependence on initial data for the Fornberg–Whitham-type equation in Besov spaces","authors":"Xueyuan Qi","doi":"10.1007/s00605-024-01974-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first establish the local well-posedness for the Fornberg–Whitham-type equation in the Besov spaces <span>\\(B^{s}_{p,r}({\\mathbb {R}})\\)</span> with <span>\\( 1\\le p,r\\le \\infty \\)</span> and <span>\\(s&gt; max\\{1+\\frac{1}{p},\\frac{3}{2}\\}\\)</span>, which improve the previous work in Sobolev spaces <span>\\( H^{s}({\\mathbb {R}})= B^{s}_{2,2}({\\mathbb {R}})\\)</span> with <span>\\( s&gt;\\frac{3}{2}\\)</span> (Lai and Luo in J Differ Equ 344:509–521, 2023). Furthermore, we prove the solution is not uniformly continuous dependence on the initial data in the Besov spaces <span>\\(B^{s}_{p,r}({\\mathbb {R}})\\)</span> with <span>\\( 1\\le p\\le \\infty \\)</span>,<span>\\( 1\\le r&lt; \\infty \\)</span> and <span>\\(s&gt; max\\{1+\\frac{1}{p},\\frac{3}{2}\\}\\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01974-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first establish the local well-posedness for the Fornberg–Whitham-type equation in the Besov spaces \(B^{s}_{p,r}({\mathbb {R}})\) with \( 1\le p,r\le \infty \) and \(s> max\{1+\frac{1}{p},\frac{3}{2}\}\), which improve the previous work in Sobolev spaces \( H^{s}({\mathbb {R}})= B^{s}_{2,2}({\mathbb {R}})\) with \( s>\frac{3}{2}\) (Lai and Luo in J Differ Equ 344:509–521, 2023). Furthermore, we prove the solution is not uniformly continuous dependence on the initial data in the Besov spaces \(B^{s}_{p,r}({\mathbb {R}})\) with \( 1\le p\le \infty \),\( 1\le r< \infty \) and \(s> max\{1+\frac{1}{p},\frac{3}{2}\}\).

贝索夫空间中福恩贝格-惠瑟姆型方程的良好拟合性和对初始数据的非均匀依赖性
本文首先在贝索夫空间 \(B^{s}_{p,r}({\mathbb {R}})\) with \( 1\le p,r\le \infty \) and\(s>;max{1+\frac{1}{p},\frac{3}{2}\}), which improve the previous work in Sobolev spaces \( H^{s}({\mathbb {R}})= B^{s}_{2,2}({\mathbb {R}})\) with\( s>\frac{3}{2}\) (Lai and Luo in J Differ Equ 344:509-521, 2023).此外,我们还证明了在贝索夫空间 \(B^{s}_{p,r}({\mathbb {R}})\) with \( 1\le p\le \infty \),\( 1\le r< \infty \) and\(s> max\{1+\frac{1}{p},\frac{3}{2}\}) 中,解并非均匀连续地依赖于初始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信