On noncompact warped product Ricci solitons

Pub Date : 2024-04-05 DOI:10.1002/mana.202300312
V. Borges
{"title":"On noncompact warped product Ricci solitons","authors":"V. Borges","doi":"10.1002/mana.202300312","DOIUrl":null,"url":null,"abstract":"<p>The goal of this paper is to investigate complete noncompact warped product gradient Ricci solitons. Nonexistence results, estimates for the warping function and for its gradient are proven. When the soliton is steady or expanding these nonexistence results generalize to a broader context certain  estimates and rigidity obtained when studying warped product Einstein manifolds. When the soliton is shrinking, it is presented as a nonexistence theorem with no counterpart in the Einstein case, which is proved using properties of the first eigenvalue of a weighted Laplacian.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to investigate complete noncompact warped product gradient Ricci solitons. Nonexistence results, estimates for the warping function and for its gradient are proven. When the soliton is steady or expanding these nonexistence results generalize to a broader context certain  estimates and rigidity obtained when studying warped product Einstein manifolds. When the soliton is shrinking, it is presented as a nonexistence theorem with no counterpart in the Einstein case, which is proved using properties of the first eigenvalue of a weighted Laplacian.

分享
查看原文
关于非紧凑翘积利玛窦孤子
本文旨在研究完整的非紧凑翘曲积梯度利玛窦孤子。本文证明了非存在性结果、翘曲函数及其梯度的估计值。当孤子稳定或膨胀时,这些非存在性结果将研究翘积爱因斯坦流形时获得的某些估计值和刚性推广到更广的范围。当孤子收缩时,它将以非存在性定理的形式呈现,而在爱因斯坦情况下没有对应的定理,该定理是利用加权拉普拉奇的第一个特征值的性质证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信