On the Gauss-Kuzmin-Lévy problem for nearest integer continued fractions

Florin P. Boca, Maria Siskaki
{"title":"On the Gauss-Kuzmin-Lévy problem for nearest integer continued fractions","authors":"Florin P. Boca, Maria Siskaki","doi":"10.1007/s00605-024-01968-w","DOIUrl":null,"url":null,"abstract":"<p>This note provides an effective bound in the Gauss-Kuzmin-Lévy problem for some Gauss type shifts associated with nearest integer continued fractions, acting on the interval <span>\\(I_0=\\left[ 0,\\frac{1}{2}\\right] \\)</span> or <span>\\(I_0=\\left[ -\\frac{1}{2},\\frac{1}{2}\\right] \\)</span>. We prove asymptotic formulas <span>\\(\\lambda (T^{-n}I) =\\mu (I)(\\lambda ( I_0) +O(q^n))\\)</span> for such transformations <i>T</i>, where <span>\\(\\lambda \\)</span> is the Lebesgue measure on <span>\\({\\mathbb {R}}\\)</span>, <span>\\(\\mu \\)</span> the normalized <i>T</i>-invariant Lebesgue absolutely continuous measure, <i>I</i> subinterval in <span>\\(I_0\\)</span>, and <span>\\(q=0.288\\)</span> is smaller than the Wirsing constant <span>\\(q_W\\approx 0.3036\\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01968-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This note provides an effective bound in the Gauss-Kuzmin-Lévy problem for some Gauss type shifts associated with nearest integer continued fractions, acting on the interval \(I_0=\left[ 0,\frac{1}{2}\right] \) or \(I_0=\left[ -\frac{1}{2},\frac{1}{2}\right] \). We prove asymptotic formulas \(\lambda (T^{-n}I) =\mu (I)(\lambda ( I_0) +O(q^n))\) for such transformations T, where \(\lambda \) is the Lebesgue measure on \({\mathbb {R}}\), \(\mu \) the normalized T-invariant Lebesgue absolutely continuous measure, I subinterval in \(I_0\), and \(q=0.288\) is smaller than the Wirsing constant \(q_W\approx 0.3036\).

Abstract Image

关于最近整数续分数的高斯-库兹明-列维问题
本注解在高斯-库兹明-莱维(Gauss-Kuzmin-Lévy)问题中为一些与最近整数续分数相关的高斯型移动提供了有效的约束,这些移动作用于区间 \(I_0=\left[ 0,\frac{1}{2}\right] \) 或 \(I_0=\left[ -\frac{1}{2},\frac{1}{2}\right] \)。对于这样的变换 T,我们证明了渐近公式 \(\lambda (T^{-n}I) =\mu (I)(\lambda ( I_0) +O(q^n))\) ,其中 \(\lambda \) 是 Lebesgue measure on \({\mathbb {R}}\)、\(\mu\)是归一化的T不变的Lebesgue绝对连续度量,I子区间在\(I_0\)中,并且\(q=0.288)小于维尔兴常数(q_W大约0.3036)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信