Multiplicity results for system of Pucci’s extremal operator

{"title":"Multiplicity results for system of Pucci’s extremal operator","authors":"","doi":"10.1007/s00605-024-01972-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This article deals with the existence of multiple positive solutions to the following system of nonlinear equations involving Pucci’s extremal operators: <span> <span>$$\\begin{aligned} \\left\\{ \\begin{aligned} -\\mathcal {M}_{\\lambda _1,\\Lambda _1}^+(D^2u_1)&amp;=f_1(u_1,u_2,\\dots ,u_n)~~~{} &amp; {} \\textrm{in}~~\\Omega ,\\\\ -\\mathcal {M}_{\\lambda _2,\\Lambda _2}^+(D^2u_2)&amp;=f_2(u_1,u_2,\\dots ,u_n)~~~{} &amp; {} \\textrm{in}~~\\Omega ,\\\\ ~~~~~~~~\\vdots&amp;=~~~~~~~~~~~~ \\vdots \\\\ -\\mathcal {M}_{\\lambda _n,\\Lambda _n}^+(D^2u_n)&amp;=f_n(u_1,u_2,\\dots ,u_n)~~~{} &amp; {} \\textrm{in}~~\\Omega ,\\\\ u_1=u_2=\\dots =u_n&amp;=0~~{} &amp; {} \\textrm{on}~~\\partial \\Omega , \\end{aligned} \\right. \\end{aligned}$$</span> </span>where <span> <span>\\(\\Omega \\)</span> </span> is a smooth and bounded domain in <span> <span>\\(\\mathbb {R}^N\\)</span> </span> and <span> <span>\\(f_i:[0,\\infty )\\times [0,\\infty )\\dots \\times [0,\\infty )\\rightarrow [0,\\infty )\\)</span> </span> are <span> <span>\\(C^{\\alpha }\\)</span> </span> functions for <span> <span>\\(i=1,2,\\dots ,n\\)</span> </span>. The multiplicity result in this work is motivated by the work Amann (SIAM Rev 18(4):620–709, 1976), and Shivaji (Nonlinear analysis and applications (Arlington, Tex., 1986), Dekker, New York, 1987), where the three solutions theorem (multiplicity) has been proved for linear equations. Later on, it was extended for a system of equations involving the Laplace operator by Shivaji and Ali (Differ Integr Equ 19(6):669–680, 2006). Thus, the results here can be considered as a nonlinear analog of the results mentioned above. We also have applied the above results to show the existence of three positive solutions to a system of nonlinear elliptic equations having combined sublinear growth by explicitly constructing two ordered pairs of sub and supersolutions.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01972-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article deals with the existence of multiple positive solutions to the following system of nonlinear equations involving Pucci’s extremal operators: $$\begin{aligned} \left\{ \begin{aligned} -\mathcal {M}_{\lambda _1,\Lambda _1}^+(D^2u_1)&=f_1(u_1,u_2,\dots ,u_n)~~~{} & {} \textrm{in}~~\Omega ,\\ -\mathcal {M}_{\lambda _2,\Lambda _2}^+(D^2u_2)&=f_2(u_1,u_2,\dots ,u_n)~~~{} & {} \textrm{in}~~\Omega ,\\ ~~~~~~~~\vdots&=~~~~~~~~~~~~ \vdots \\ -\mathcal {M}_{\lambda _n,\Lambda _n}^+(D^2u_n)&=f_n(u_1,u_2,\dots ,u_n)~~~{} & {} \textrm{in}~~\Omega ,\\ u_1=u_2=\dots =u_n&=0~~{} & {} \textrm{on}~~\partial \Omega , \end{aligned} \right. \end{aligned}$$ where \(\Omega \) is a smooth and bounded domain in \(\mathbb {R}^N\) and \(f_i:[0,\infty )\times [0,\infty )\dots \times [0,\infty )\rightarrow [0,\infty )\) are \(C^{\alpha }\) functions for \(i=1,2,\dots ,n\) . The multiplicity result in this work is motivated by the work Amann (SIAM Rev 18(4):620–709, 1976), and Shivaji (Nonlinear analysis and applications (Arlington, Tex., 1986), Dekker, New York, 1987), where the three solutions theorem (multiplicity) has been proved for linear equations. Later on, it was extended for a system of equations involving the Laplace operator by Shivaji and Ali (Differ Integr Equ 19(6):669–680, 2006). Thus, the results here can be considered as a nonlinear analog of the results mentioned above. We also have applied the above results to show the existence of three positive solutions to a system of nonlinear elliptic equations having combined sublinear growth by explicitly constructing two ordered pairs of sub and supersolutions.

普奇极值算子系统的多重性结果
摘要 本文论述了下列涉及 Pucci 极值算子的非线性方程组的多正解的存在性: $$\begin{aligned}\left\{ \begin{aligned} -\mathcal {M}_{\lambda _1,\Lambda _1}^+(D^2u_1)&=f_1(u_1,u_2,\dots ,u_n)~~~{} & {}\textrm{in}~~\Omega ,\ -\mathcal {M}_{\lambda _2,\Lambda _2}^+(D^2u_2)&=f_2(u_1,u_2,\dots ,u_n)~~~{} & {}\textrm{in}~~\Omega ,\~~~~~~~~\vdots&=~~~~~~~~~~~~ \vdots \ -\mathcal {M}_{\lambda _n,\Lambda _n}^+(D^2u_n)&=f_n(u_1,u_2,\dots ,u_n)~~~{} & {}\textrm{in}~~\Omega ,\ u_1=u_2=\dots =u_n&=0~~{} & {}\(textrm{on}~~partial\Omega , (end{aligned})\(right.\end{aligned}$ 其中 \(\Omega \) 是在\(\mathbb {R}^N\) 中的一个光滑的有界域,并且 \(f_i:[都是(i=1,2,dots ,n)的(C^{α})函数。这项工作中的多重性结果受 Amann(SIAM Rev 18(4):620-709,1976 年)和 Shivaji(Nonlinear analysis and applications (Arlington, Tex., 1986), Dekker, New York, 1987 年)工作的启发,在这些工作中,三解定理(多重性)已被证明适用于线性方程。后来,Shivaji 和 Ali 对涉及拉普拉斯算子的方程组进行了扩展(Differ Integr Equ 19(6):669-680, 2006)。因此,这里的结果可视为上述结果的非线性类似物。我们还应用上述结果,通过明确地构造两对有序的子解和超解,证明了具有联合次线性增长的非线性椭圆方程系统存在三个正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信