{"title":"Organization and Role of Bacterial SMC, MukBEF, MksBEF, Wadjet, and RecN Complexes","authors":"N. E. Morozova, A. S. Potysyeva, A. D. Vedyaykin","doi":"10.1134/s1990519x23700074","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>SMC (Structural maintenance of chromosomes) complexes are key participants in the spatial organization of DNA in all living organisms: in bacteria, archaea and eukaryotes. In bacteria, there are several homologues of SMC complexes that perform seemingly unrelated functions, but function through very similar, highly conserved mechanisms. In recent years, it has been established that SMC complexes are capable of forming loops from DNA (through the so-called loop extrusion), which allows them to be considered as a separate class of DNA translocases. This paper discusses bacterial SMC complexes in comparison with their homologues such as MukBEF, MksBEF, RecN, and Wadjet, as well as with eukaryotic SMC complexes. Their properties, role and functions in the key processes of the bacterial cell are discussed.</p>","PeriodicalId":9705,"journal":{"name":"Cell and Tissue Biology","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1990519x23700074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
SMC (Structural maintenance of chromosomes) complexes are key participants in the spatial organization of DNA in all living organisms: in bacteria, archaea and eukaryotes. In bacteria, there are several homologues of SMC complexes that perform seemingly unrelated functions, but function through very similar, highly conserved mechanisms. In recent years, it has been established that SMC complexes are capable of forming loops from DNA (through the so-called loop extrusion), which allows them to be considered as a separate class of DNA translocases. This paper discusses bacterial SMC complexes in comparison with their homologues such as MukBEF, MksBEF, RecN, and Wadjet, as well as with eukaryotic SMC complexes. Their properties, role and functions in the key processes of the bacterial cell are discussed.
期刊介绍:
The journal publishes papers on vast aspects of cell research, including morphology, biochemistry, biophysics, genetics, molecular biology, immunology. The journal accepts original experimental studies, theoretical articles suggesting novel principles and approaches, presentations of new hypotheses, reviews highlighting major developments in cell biology, discussions. The main objective of the journal is to provide a competent representation and integration of research made on cells (animal and plant cells, both in vivo and in cell culture) offering insight into the structure and functions of live cells as a whole. Characteristically, the journal publishes articles on biology of free-living and parasitic protists, which, unlike Metazoa, are eukaryotic organisms at the cellular level of organization.