{"title":"Decellularized Extracellular Matrix Slows Down Premature Senescence of Human Endometrial Mesenchymal Stromal Cells","authors":"E. B. Burova, I. E. Perevoznikov, R. E. Ushakov","doi":"10.1134/s1990519x23700037","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The extracellular matrix (ECM), the main component of the extracellular space, mediates signal transmission between cells and controls their key functions: proliferation, differentiation, and migration. The relevance of studying ECM research is stipulated to the wide range of its biological properties, which can be used in regenerative medicine and bioengineering. Particular interest is presented the study of the regulatory activity on various cellular functions of cell-derived decellularized ECM (dECM). In this work, we tested the hypothesis about the modulating effect of dECM deposited by young MSC from Wharton’s jelly on the aging phenotype of endometrial human multipotent mesenchymal stromal cells (eMSCs), which the cells acquired in response to oxidative stress. This aspect of ECM functioning in the context of eMSCs has not yet been considered. A comparative study of H<sub>2</sub>O<sub>2</sub>-induced senescence of eMSCs cultured on dECM and on plastic for a long time showed a significant change in the hallmarks of aging in the cell population maintained on dECM. Taken together, the results obtained suggest that the dECM is able to partially reverse (retard) premature senescence of eMSCs in response to oxidative stress, as well as expanding the understanding of the ECM as a regulator of the functional activity of cells.</p>","PeriodicalId":9705,"journal":{"name":"Cell and Tissue Biology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1990519x23700037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The extracellular matrix (ECM), the main component of the extracellular space, mediates signal transmission between cells and controls their key functions: proliferation, differentiation, and migration. The relevance of studying ECM research is stipulated to the wide range of its biological properties, which can be used in regenerative medicine and bioengineering. Particular interest is presented the study of the regulatory activity on various cellular functions of cell-derived decellularized ECM (dECM). In this work, we tested the hypothesis about the modulating effect of dECM deposited by young MSC from Wharton’s jelly on the aging phenotype of endometrial human multipotent mesenchymal stromal cells (eMSCs), which the cells acquired in response to oxidative stress. This aspect of ECM functioning in the context of eMSCs has not yet been considered. A comparative study of H2O2-induced senescence of eMSCs cultured on dECM and on plastic for a long time showed a significant change in the hallmarks of aging in the cell population maintained on dECM. Taken together, the results obtained suggest that the dECM is able to partially reverse (retard) premature senescence of eMSCs in response to oxidative stress, as well as expanding the understanding of the ECM as a regulator of the functional activity of cells.
期刊介绍:
The journal publishes papers on vast aspects of cell research, including morphology, biochemistry, biophysics, genetics, molecular biology, immunology. The journal accepts original experimental studies, theoretical articles suggesting novel principles and approaches, presentations of new hypotheses, reviews highlighting major developments in cell biology, discussions. The main objective of the journal is to provide a competent representation and integration of research made on cells (animal and plant cells, both in vivo and in cell culture) offering insight into the structure and functions of live cells as a whole. Characteristically, the journal publishes articles on biology of free-living and parasitic protists, which, unlike Metazoa, are eukaryotic organisms at the cellular level of organization.