{"title":"SNPP VIIRS solar vector orientation knowledge error revealed by solar diffuser stability monitor sun views","authors":"Ning Lei, Xiaoxiong Xiong, Sherry Li, Kevin Twedt","doi":"10.1117/1.jrs.18.027502","DOIUrl":null,"url":null,"abstract":"Inaccurate solar vector orientation knowledge can considerably deteriorate calibration results for the Visible Infrared Imaging Radiometer Suite (VIIRS). We develop a methodology to use the Suomi National Polar-orbiting Partnership (SNPP) VIIRS solar diffuser stability monitor (SDSM) sun view data to assess the knowledge accuracy of the solar angles that reside in the onboard calibrator intermediate product (OBCIP) files used for on-orbit radiometric calibration. We applied an initial version of this methodology in 2013 and found that the solar declination angle had a relative error that varied between ∼0 deg to 0.17 deg. The relative error is referenced to the error at the SNPP satellite yaw maneuver time that occurred on February 15 to 16, 2012. Our mission long results from the current methodology show that the solar vector angular knowledge error occurred from the early mission until mission day 1129 (November 30, 2014). The error undulates yearly with the largest error in the solar declination angle increasing from ∼0.17 deg in the first year to 0.19 deg in the third year, agreeing with the solar vector error root cause understanding realized in early 2014. With the reprocessed OBCIP files, we find the solar vector declination and azimuth angular knowledge errors have near zero biases. The detection limit of this methodology strongly depends on how finely the solar angle is sampled by the SDSM detectors. With the SDSM sun view data collected when the SDSM operated once per day, this methodology yields detection standard deviations of 0.013 deg and 0.024 deg for the solar declination and azimuth angles. With a 3-sigma criterion, at the detection limits, the solar orientation errors result in a calibration error of 0.088%. This method can be applied to other Earth-orbiting sensors.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"57 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.027502","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Inaccurate solar vector orientation knowledge can considerably deteriorate calibration results for the Visible Infrared Imaging Radiometer Suite (VIIRS). We develop a methodology to use the Suomi National Polar-orbiting Partnership (SNPP) VIIRS solar diffuser stability monitor (SDSM) sun view data to assess the knowledge accuracy of the solar angles that reside in the onboard calibrator intermediate product (OBCIP) files used for on-orbit radiometric calibration. We applied an initial version of this methodology in 2013 and found that the solar declination angle had a relative error that varied between ∼0 deg to 0.17 deg. The relative error is referenced to the error at the SNPP satellite yaw maneuver time that occurred on February 15 to 16, 2012. Our mission long results from the current methodology show that the solar vector angular knowledge error occurred from the early mission until mission day 1129 (November 30, 2014). The error undulates yearly with the largest error in the solar declination angle increasing from ∼0.17 deg in the first year to 0.19 deg in the third year, agreeing with the solar vector error root cause understanding realized in early 2014. With the reprocessed OBCIP files, we find the solar vector declination and azimuth angular knowledge errors have near zero biases. The detection limit of this methodology strongly depends on how finely the solar angle is sampled by the SDSM detectors. With the SDSM sun view data collected when the SDSM operated once per day, this methodology yields detection standard deviations of 0.013 deg and 0.024 deg for the solar declination and azimuth angles. With a 3-sigma criterion, at the detection limits, the solar orientation errors result in a calibration error of 0.088%. This method can be applied to other Earth-orbiting sensors.
期刊介绍:
The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.