Convergence of an Operator Splitting Scheme for Fractional Conservation Laws with Lévy Noise

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Soumya Ranjan Behera, Ananta K. Majee
{"title":"Convergence of an Operator Splitting Scheme for Fractional Conservation Laws with Lévy Noise","authors":"Soumya Ranjan Behera, Ananta K. Majee","doi":"10.1515/cmam-2023-0174","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with an operator-splitting scheme for linear fractional and fractional degenerate stochastic conservation laws driven by multiplicative Lévy noise. More specifically, using a variant of the classical Kružkov doubling of variables approach, we show that the approximate solutions generated by the splitting scheme converge to the unique stochastic entropy solution of the underlying problems. Finally, the convergence analysis is illustrated by several numerical examples.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"100 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0174","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with an operator-splitting scheme for linear fractional and fractional degenerate stochastic conservation laws driven by multiplicative Lévy noise. More specifically, using a variant of the classical Kružkov doubling of variables approach, we show that the approximate solutions generated by the splitting scheme converge to the unique stochastic entropy solution of the underlying problems. Finally, the convergence analysis is illustrated by several numerical examples.
具有莱维噪声的分数守恒定律的算子分裂方案的收敛性
在本文中,我们关注由乘法莱维噪声驱动的线性分数和分数退化随机守恒定律的算子分裂方案。更具体地说,利用经典的克鲁兹科夫变量倍增方法的变体,我们证明了分割方案生成的近似解收敛于基础问题的唯一随机熵解。最后,我们通过几个数值示例来说明收敛性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信