HDG Method for Nonlinear Parabolic Integro-Differential Equations

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Riya Jain, Sangita Yadav
{"title":"HDG Method for Nonlinear Parabolic Integro-Differential Equations","authors":"Riya Jain, Sangita Yadav","doi":"10.1515/cmam-2023-0060","DOIUrl":null,"url":null,"abstract":"The hybridizable discontinuous Galerkin (HDG) method has been applied to a nonlinear parabolic integro-differential equation. The nonlinear functions are considered to be Lipschitz continuous to analyze uniform in time a priori bounds. An extended type Ritz–Volterra projection is introduced and used along with the HDG projection as an intermediate projection to achieve optimal order convergence of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>O</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>h</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0060_ineq_0001.png\" /> <jats:tex-math>O(h^{k+1})</jats:tex-math> </jats:alternatives> </jats:inline-formula> when polynomials of degree <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0060_ineq_0002.png\" /> <jats:tex-math>k\\geq 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> are used to approximate both the solution and the flux variables. By relaxing the assumptions in the nonlinear variable, super-convergence is achieved by element-by-element post-processing. Using the backward Euler method in temporal direction and quadrature rule to discretize the integral term, a fully discrete scheme is derived along with its error estimates. Finally, with the help of numerical examples in two-dimensional domains, computational results are obtained, which verify our results.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"44 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The hybridizable discontinuous Galerkin (HDG) method has been applied to a nonlinear parabolic integro-differential equation. The nonlinear functions are considered to be Lipschitz continuous to analyze uniform in time a priori bounds. An extended type Ritz–Volterra projection is introduced and used along with the HDG projection as an intermediate projection to achieve optimal order convergence of O ( h k + 1 ) O(h^{k+1}) when polynomials of degree k 0 k\geq 0 are used to approximate both the solution and the flux variables. By relaxing the assumptions in the nonlinear variable, super-convergence is achieved by element-by-element post-processing. Using the backward Euler method in temporal direction and quadrature rule to discretize the integral term, a fully discrete scheme is derived along with its error estimates. Finally, with the help of numerical examples in two-dimensional domains, computational results are obtained, which verify our results.
非线性抛物整微分方程的 HDG 方法
混合非连续伽勒金(HDG)方法被应用于非线性抛物线积分微分方程。非线性函数被认为是 Lipschitz 连续的,以分析时间上均匀的先验边界。当使用度数 k ≥ 0 k\geq 0 的多项式来逼近解和通量变量时,引入并使用扩展型 Ritz-Volterra 投影和 HDG 投影作为中间投影,以实现 O ( h k + 1 ) O(h^{k+1}) 的最优阶收敛。通过放宽非线性变量的假设,逐元素后处理可实现超收敛。利用时间方向上的后向欧拉法和正交规则对积分项进行离散化,得出了完全离散的方案及其误差估计。最后,在二维域数值实例的帮助下,获得了计算结果,验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信