{"title":"Mathematical analysis of a modified Volterra-Leslie chemostat Model","authors":"Mohammed Amine Hamra","doi":"10.1007/s12064-024-00415-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the asymptotic behavior of a modified chemostat model. We first demonstrate the existence of equilibria. Then, we present a mathematical analysis for the model, the invariance, the positivity, the persistence of the solutions, and the asymptotic global stability of the interior equilibrium. Some numerical simulations are carried out to illustrate the main results.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-024-00415-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the asymptotic behavior of a modified chemostat model. We first demonstrate the existence of equilibria. Then, we present a mathematical analysis for the model, the invariance, the positivity, the persistence of the solutions, and the asymptotic global stability of the interior equilibrium. Some numerical simulations are carried out to illustrate the main results.
期刊介绍:
Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are:
Artificial Life;
Bioinformatics with a focus on novel methods, phenomena, and interpretations;
Bioinspired Modeling;
Complexity, Robustness, and Resilience;
Embodied Cognition;
Evolutionary Biology;
Evo-Devo;
Game Theoretic Modeling;
Genetics;
History of Biology;
Language Evolution;
Mathematical Biology;
Origin of Life;
Philosophy of Biology;
Population Biology;
Systems Biology;
Theoretical Ecology;
Theoretical Molecular Biology;
Theoretical Neuroscience & Cognition.