{"title":"Numerical investigation of collision characteristics of non-spherical particles on ductile surfaces under normal impact","authors":"Rahul Tarodiya, Avi Levy","doi":"10.1007/s40571-024-00746-7","DOIUrl":null,"url":null,"abstract":"<p>The particle–wall collision behavior plays a crucial role in determining particle motion during the simulation of multiphase flow processes. The coefficient of restitution (COR) is generally used to characterize the particle–wall collisional behavior. Correct consideration of COR is essential for obtaining accurate results in numerical simulations. In the present work, the COR during the normal impact of a rigid prolate ellipsoidal particle on the target wall is investigated using the finite element method. The loss in kinetic energy of the particles after impact is used to analyze the COR. The simulations are conducted with a particle of sphericity 1, 0.9, 0.8, 0.7, and 0.5 impacted at different orientation angles (angle between particle major axis to the horizontal plane) in the range 0°–90°. The effect of particle sphericity, particle orientation before impact, impact velocity, and target surface material on COR is determined. Further, an understanding is established on the deviation in COR for the impact of non-spherical particles as compared to the COR for the impact of spherical particles. The insights gained from this study are valuable for accurately predicting the motion of non-spherical particles in multiphase processes using the discrete element method.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"162 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00746-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The particle–wall collision behavior plays a crucial role in determining particle motion during the simulation of multiphase flow processes. The coefficient of restitution (COR) is generally used to characterize the particle–wall collisional behavior. Correct consideration of COR is essential for obtaining accurate results in numerical simulations. In the present work, the COR during the normal impact of a rigid prolate ellipsoidal particle on the target wall is investigated using the finite element method. The loss in kinetic energy of the particles after impact is used to analyze the COR. The simulations are conducted with a particle of sphericity 1, 0.9, 0.8, 0.7, and 0.5 impacted at different orientation angles (angle between particle major axis to the horizontal plane) in the range 0°–90°. The effect of particle sphericity, particle orientation before impact, impact velocity, and target surface material on COR is determined. Further, an understanding is established on the deviation in COR for the impact of non-spherical particles as compared to the COR for the impact of spherical particles. The insights gained from this study are valuable for accurately predicting the motion of non-spherical particles in multiphase processes using the discrete element method.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.