3D DEM-based particle-scale analysis of drained and undrained triaxial behaviors of granular materials

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lei Jin, Jingjing Li, Yang Ye, Yu Wang
{"title":"3D DEM-based particle-scale analysis of drained and undrained triaxial behaviors of granular materials","authors":"Lei Jin, Jingjing Li, Yang Ye, Yu Wang","doi":"10.1007/s40571-024-00743-w","DOIUrl":null,"url":null,"abstract":"<p>Some numerical simulations of drained and undrained triaxial tests on granular materials with different initial densities are carried out with the three-dimensional discrete element method. An in-depth particle-scale analysis is performed quantitatively to illustrate the physical mechanism of the shear mechanical behaviors, with a special attention paid to the characteristics of quasi-steady state and critical state. The simulation results show that the initial density and shear drainage condition both have significant effects on the evolution of stress–strain, coordination number, fabric anisotropy factor, force chains and clusters. The chained grains ratio and the mean length of force chains in the specimens are constantly adjusted to bear and transfer the changing external loads. The transitions between small clusters and large clusters are also continually taking place in varying degrees, correlating to volumetric contraction or dilation. For the loose undrained triaxial specimen presenting quasi-steady state during shearing, the coordination number decreases obviously to nearly 4 and then increases again; the chained grains ratio decreases after a slight increase in the initial loading stage, and then begin to increase again after a period of lower value of around 0.285; the volume ratio of small, submedium and medium clusters all first decreases and then increase gradually, meanwhile volume ratio of large clusters increases sharply to as much as 0.28 and then decreases gradually. The macroscopic critical state of granular materials is a comprehensively external manifestation when the microscopic coordination number and mesoscopic force chains and clusters all evolute to a dynamic equilibrium. At the critical state, the deviator stress, void ratio, coordination number, fabric anisotropy factor, and the volume ratio of small clusters and large clusters all manifest a respectively unique linear relationship with the mean effective stress.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"205 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00743-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Some numerical simulations of drained and undrained triaxial tests on granular materials with different initial densities are carried out with the three-dimensional discrete element method. An in-depth particle-scale analysis is performed quantitatively to illustrate the physical mechanism of the shear mechanical behaviors, with a special attention paid to the characteristics of quasi-steady state and critical state. The simulation results show that the initial density and shear drainage condition both have significant effects on the evolution of stress–strain, coordination number, fabric anisotropy factor, force chains and clusters. The chained grains ratio and the mean length of force chains in the specimens are constantly adjusted to bear and transfer the changing external loads. The transitions between small clusters and large clusters are also continually taking place in varying degrees, correlating to volumetric contraction or dilation. For the loose undrained triaxial specimen presenting quasi-steady state during shearing, the coordination number decreases obviously to nearly 4 and then increases again; the chained grains ratio decreases after a slight increase in the initial loading stage, and then begin to increase again after a period of lower value of around 0.285; the volume ratio of small, submedium and medium clusters all first decreases and then increase gradually, meanwhile volume ratio of large clusters increases sharply to as much as 0.28 and then decreases gradually. The macroscopic critical state of granular materials is a comprehensively external manifestation when the microscopic coordination number and mesoscopic force chains and clusters all evolute to a dynamic equilibrium. At the critical state, the deviator stress, void ratio, coordination number, fabric anisotropy factor, and the volume ratio of small clusters and large clusters all manifest a respectively unique linear relationship with the mean effective stress.

基于三维 DEM 的颗粒尺度分析颗粒材料的排水和非排水三轴行为
采用三维离散元方法对不同初始密度的颗粒材料的排水和不排水三轴试验进行了数值模拟。对颗粒尺度进行了深入的定量分析,以说明剪切力学行为的物理机制,并特别关注准稳态和临界状态的特征。模拟结果表明,初始密度和剪切排水条件对应力应变、配位数、织物各向异性因子、力链和团簇的演变均有显著影响。试样中的链粒比和力链平均长度不断调整,以承受和传递不断变化的外部载荷。小团簇和大团簇之间也不断发生不同程度的转变,这与体积收缩或扩张有关。对于在剪切过程中呈现准稳态的松散不排水三轴试样,配位数明显降低到接近 4 后又重新升高;链状晶粒比在加载初期略有升高后降低,经过一段时间降低到 0.285 左右后又开始升高;小晶簇、亚中晶簇和中晶簇的体积比均先降低后逐渐升高,而大晶簇的体积比则急剧升高到 0.28 左右后又逐渐降低。颗粒材料的宏观临界状态是微观配位数和中观力链、力簇都演化到动态平衡的综合外在表现。在临界状态下,偏差应力、空隙率、配位数、织物各向异性因子、小团体积比和大团体积比都分别与平均有效应力呈独特的线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信