Knockout of Hsp70 Genes Modulates Age-Related Transcriptomic Changes in Leg Muscles and Reduces the Locomotion Speed and Lifespan of Drosophila melanogaster
I. V. Kukushkina, P. A. Makhnovskii, V. G. Zgoda, N. S. Kurochkina, D. V. Popov
{"title":"Knockout of Hsp70 Genes Modulates Age-Related Transcriptomic Changes in Leg Muscles and Reduces the Locomotion Speed and Lifespan of Drosophila melanogaster","authors":"I. V. Kukushkina, P. A. Makhnovskii, V. G. Zgoda, N. S. Kurochkina, D. V. Popov","doi":"10.1134/s0026893324020109","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the effect of knockout of six <i>Hsp70</i> genes (orthologues of the mammalian genes <i>Hspa1a</i>, <i>Hspa1b</i>, <i>Hspa2,</i> and <i>Hspa8</i>) on age-related changes in gene expression in the legs of <i>Drosophila melanogaster</i>, which contain predominantly skeletal muscle bundles. For this, the leg transcriptomic profile was examined in males of the <i>w</i><sup><i>1118</i></sup> control strain and the <i>Hsp70</i><sup><i>–</i></sup> strain on the 7th, 23rd and 47th days of life. In <i>w</i><sup><i>1118</i></sup> flies, an age-related decrease in the locomotion (climbing) speed (a marker of functional state and endurance) was accompanied by a pronounced change in the transcriptomic profile of the leg skeletal muscles, which is conservative in nature. In <i>Hsp70</i> <sup><i>–</i></sup> flies, the median lifespan was shorter and the locomotion speed was significantly lower compared to the control; at the same time, complex changes in the age-related dynamics of the skeletal muscle transcriptome were observed. Mass spectrometry-based quantitative proteomics showed that 47-day-old <i>Hsp70</i> <sup><i>–</i></sup> flies, compared with <i>w</i><sup><i>1118</i></sup> flies, demonstrated multidirectional changes in the contents of key enzymes of glucose metabolism and fat oxidation (glycolysis, pentose phosphate pathway, Krebs cycle, beta-oxidation, and oxidative phosphorylation). Such dysregulation may be associated with a compensatory increase in the expression of other genes encoding chaperones (small Hsp, Hsp40, 60, and 70), which regulate specific sets of target proteins. Taken together, our data show that knockout of six <i>Hsp70</i> genes slightly reduced the median lifespan of flies, but significantly reduced the locomotion speed, which may be associated with complex changes in the transcriptome of the leg skeletal muscles and with multidirectional changes in the contents of key enzymes of energy metabolism.</p>","PeriodicalId":18734,"journal":{"name":"Molecular Biology","volume":"186 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026893324020109","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of knockout of six Hsp70 genes (orthologues of the mammalian genes Hspa1a, Hspa1b, Hspa2, and Hspa8) on age-related changes in gene expression in the legs of Drosophila melanogaster, which contain predominantly skeletal muscle bundles. For this, the leg transcriptomic profile was examined in males of the w1118 control strain and the Hsp70– strain on the 7th, 23rd and 47th days of life. In w1118 flies, an age-related decrease in the locomotion (climbing) speed (a marker of functional state and endurance) was accompanied by a pronounced change in the transcriptomic profile of the leg skeletal muscles, which is conservative in nature. In Hsp70– flies, the median lifespan was shorter and the locomotion speed was significantly lower compared to the control; at the same time, complex changes in the age-related dynamics of the skeletal muscle transcriptome were observed. Mass spectrometry-based quantitative proteomics showed that 47-day-old Hsp70– flies, compared with w1118 flies, demonstrated multidirectional changes in the contents of key enzymes of glucose metabolism and fat oxidation (glycolysis, pentose phosphate pathway, Krebs cycle, beta-oxidation, and oxidative phosphorylation). Such dysregulation may be associated with a compensatory increase in the expression of other genes encoding chaperones (small Hsp, Hsp40, 60, and 70), which regulate specific sets of target proteins. Taken together, our data show that knockout of six Hsp70 genes slightly reduced the median lifespan of flies, but significantly reduced the locomotion speed, which may be associated with complex changes in the transcriptome of the leg skeletal muscles and with multidirectional changes in the contents of key enzymes of energy metabolism.
期刊介绍:
Molecular Biology is an international peer reviewed journal that covers a wide scope of problems in molecular, cell and computational biology including genomics, proteomics, bioinformatics, molecular virology and immunology, molecular development biology, molecular evolution and related areals. Molecular Biology publishes reviews, experimental and theoretical works. Every year, the journal publishes special issues devoted to most rapidly developing branches of physical-chemical biology and to the most outstanding scientists.