REAL TIME MONITORING OF RESPIRATORY VIRAL INFECTIONS IN COHORT STUDIES USING A SMARTPHONE APP

David G Hancock, Elizabeth Kicic-Starcevich, Thijs Sondag, Rael Rivers, Kate McGee, Yuliya V Karpievitch, Nina D’Vaz, Patricia Agudelo-Romero, Jose A Caparros-Martin, Thomas Iosifidis, Anthony Kicic, Stephen M Stick
{"title":"REAL TIME MONITORING OF RESPIRATORY VIRAL INFECTIONS IN COHORT STUDIES USING A SMARTPHONE APP","authors":"David G Hancock, Elizabeth Kicic-Starcevich, Thijs Sondag, Rael Rivers, Kate McGee, Yuliya V Karpievitch, Nina D’Vaz, Patricia Agudelo-Romero, Jose A Caparros-Martin, Thomas Iosifidis, Anthony Kicic, Stephen M Stick","doi":"10.1101/2024.04.03.24304240","DOIUrl":null,"url":null,"abstract":"<strong>Background and Objectives</strong> Cohort studies investigating respiratory disease pathogenesis aim to pair mechanistic investigations with longitudinal virus detection but are limited by the burden of methods tracking illness over time. In this study, we explored the utility of a smartphone app to robustly identify symptomatic respiratory illnesses, while reducing burden and facilitating real-time data collection and adherence monitoring.","PeriodicalId":501074,"journal":{"name":"medRxiv - Respiratory Medicine","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Respiratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.03.24304240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objectives Cohort studies investigating respiratory disease pathogenesis aim to pair mechanistic investigations with longitudinal virus detection but are limited by the burden of methods tracking illness over time. In this study, we explored the utility of a smartphone app to robustly identify symptomatic respiratory illnesses, while reducing burden and facilitating real-time data collection and adherence monitoring.
使用智能手机应用程序对队列研究中的呼吸道病毒感染进行实时监测
背景与目的 研究呼吸道疾病发病机制的队列研究旨在将机理研究与纵向病毒检测结合起来,但受到长期追踪疾病方法负担的限制。在本研究中,我们探索了智能手机应用的效用,它能有效识别有症状的呼吸道疾病,同时减轻负担并促进实时数据收集和坚持监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信