{"title":"Experimental and Numerical Investigations of the Effect of Curing Conditions on the Temperature Rise of Concrete","authors":"Aleksandra Kuryłowicz-Cudowskaa","doi":"10.1007/s40999-024-00966-1","DOIUrl":null,"url":null,"abstract":"<p>This paper presents experimental and numerical studies investigating the impact of three curing conditions on temperature evolution in concrete cubes. The tests were performed on samples of the same volume (3.375 dm<sup>3</sup>) under different curing conditions: room temperature, insulation boxes, and adiabatic calorimeter. Various cements (Portland cement, Portland composite cement, and blast furnace slag cement) and aggregates (gravel and basalt) were examined. The temperature evolution for all mixtures was analyzed, revealing a correlation between temperature increase and concrete type. Under insulation and adiabatic curing, Portland cement with gravel aggregate exhibited the highest temperature rise, while blast furnace slag cement with basalt aggregate showed the lowest increase. The incorporation of slag, ash, or other mineral additives reduced temperature rise. Additionally, basalt aggregate’s higher heat capacity and thermal energy accumulation led to a decreased temperature increase compared to gravel. Using recorded thermal data, a numerical procedure predicting temperature development in nonadiabatic conditions through direct adiabatic tests is proposed. Comparisons between experimental and numerical temperature evolutions confirmed the model’s accuracy.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"56 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00966-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents experimental and numerical studies investigating the impact of three curing conditions on temperature evolution in concrete cubes. The tests were performed on samples of the same volume (3.375 dm3) under different curing conditions: room temperature, insulation boxes, and adiabatic calorimeter. Various cements (Portland cement, Portland composite cement, and blast furnace slag cement) and aggregates (gravel and basalt) were examined. The temperature evolution for all mixtures was analyzed, revealing a correlation between temperature increase and concrete type. Under insulation and adiabatic curing, Portland cement with gravel aggregate exhibited the highest temperature rise, while blast furnace slag cement with basalt aggregate showed the lowest increase. The incorporation of slag, ash, or other mineral additives reduced temperature rise. Additionally, basalt aggregate’s higher heat capacity and thermal energy accumulation led to a decreased temperature increase compared to gravel. Using recorded thermal data, a numerical procedure predicting temperature development in nonadiabatic conditions through direct adiabatic tests is proposed. Comparisons between experimental and numerical temperature evolutions confirmed the model’s accuracy.
期刊介绍:
International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.