Global Classical Solutions to a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Chang-Jian Wang, Chun-Hai Ke
{"title":"Global Classical Solutions to a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism","authors":"Chang-Jian Wang,&nbsp;Chun-Hai Ke","doi":"10.1007/s10440-024-00648-z","DOIUrl":null,"url":null,"abstract":"<div><p>We deal with the following predator-prey model involving nonlinear indirect chemotaxis mechanism </p><div><div><span>$$ \\left \\{ \\textstyle\\begin{array}{l@{\\quad }l} u_{t}=\\Delta u+\\xi \\nabla \\cdot (u \\nabla w)+a_{1}u(1-u^{r_{1}-1}-b_{1}v), \\ &amp;\\ \\ x\\in \\Omega , \\ t&gt;0, \\\\ v_{t}=\\Delta v-\\chi \\nabla \\cdot (v \\nabla w)+a_{2}v(1-v^{r_{2}-1}+b_{2}u), \\ &amp;\\ \\ x\\in \\Omega , \\ t&gt;0, \\\\ w_{t}=\\Delta w-w+z^{\\gamma }, \\ &amp;\\ \\ x\\in \\Omega , \\ t&gt;0, \\\\ 0=\\Delta z-z+u^{\\alpha }+v^{\\beta }, \\ &amp;\\ \\ x\\in \\Omega , \\ t&gt;0 , \\end{array}\\displaystyle \\right . $$</span></div></div><p> under homogeneous Neumann boundary conditions in a bounded and smooth domain <span>\\(\\Omega \\subset \\mathbb{R}^{n}\\)</span> (<span>\\(n\\geq 1\\)</span>), where the parameters <span>\\(\\xi ,\\chi ,a_{1},a_{2},b_{1},b_{2},\\alpha ,\\beta ,\\gamma &gt;0\\)</span>. It has been shown that if <span>\\(r_{1}&gt;1\\)</span>, <span>\\(r_{2}&gt;2\\)</span> and <span>\\(\\gamma (\\alpha +\\beta )&lt;\\frac{2}{n}\\)</span>, then there exist some suitable initial data such that the system has a global classical solution <span>\\((u,v,w,z)\\)</span>, which is bounded in <span>\\(\\Omega \\times (0,\\infty )\\)</span>. Compared to the previous contributions, in this work, the boundedness criteria are only determined by the power exponents <span>\\(r_{1}\\)</span>, <span>\\(r_{2}\\)</span>, <span>\\(\\alpha \\)</span>, <span>\\(\\beta \\)</span>, <span>\\(\\gamma \\)</span> and spatial dimension <span>\\(n\\)</span> instead of the coefficients of the system and the sizes of initial data.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"190 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-024-00648-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00648-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We deal with the following predator-prey model involving nonlinear indirect chemotaxis mechanism

$$ \left \{ \textstyle\begin{array}{l@{\quad }l} u_{t}=\Delta u+\xi \nabla \cdot (u \nabla w)+a_{1}u(1-u^{r_{1}-1}-b_{1}v), \ &\ \ x\in \Omega , \ t>0, \\ v_{t}=\Delta v-\chi \nabla \cdot (v \nabla w)+a_{2}v(1-v^{r_{2}-1}+b_{2}u), \ &\ \ x\in \Omega , \ t>0, \\ w_{t}=\Delta w-w+z^{\gamma }, \ &\ \ x\in \Omega , \ t>0, \\ 0=\Delta z-z+u^{\alpha }+v^{\beta }, \ &\ \ x\in \Omega , \ t>0 , \end{array}\displaystyle \right . $$

under homogeneous Neumann boundary conditions in a bounded and smooth domain \(\Omega \subset \mathbb{R}^{n}\) (\(n\geq 1\)), where the parameters \(\xi ,\chi ,a_{1},a_{2},b_{1},b_{2},\alpha ,\beta ,\gamma >0\). It has been shown that if \(r_{1}>1\), \(r_{2}>2\) and \(\gamma (\alpha +\beta )<\frac{2}{n}\), then there exist some suitable initial data such that the system has a global classical solution \((u,v,w,z)\), which is bounded in \(\Omega \times (0,\infty )\). Compared to the previous contributions, in this work, the boundedness criteria are only determined by the power exponents \(r_{1}\), \(r_{2}\), \(\alpha \), \(\beta \), \(\gamma \) and spatial dimension \(n\) instead of the coefficients of the system and the sizes of initial data.

具有非线性间接趋化机制的捕食者-猎物模型的全局经典解法
We deal with following predator-prey model involving nonlinear indirect chemotaxis mechanism $$ \left \{ \textstyle\begin{array}{l@{\quad }l} u_{t}=\Delta u+\xi \nabla \cdot (u \nabla w)+a_{1}u(1-u^{r_{1}-1}-b_{1}v), \ &;\ x\in\Omega , t>;0, (v_{t}=\Delta v-\chi \nabla \cdot (v \nabla w)+a_{2}v(1-v^{r_{2}-1}+b_{2}u), \ &\\ x\in \Omega , \ t>0, (w_{t}=\Delta w-w+z^{gamma }, \ &\ x\in \Omega , \ t>0, \ w_{t}=\Delta w-w+z^{gamma }, \ &\ x\in \Omega, \ t>0\ x\in \Omega , t>0, 0=Delta z-z+u^{\alpha }+v^{\beta }, \ &\ x\in \Omega , t>0 , end{array}\displaystyle \right .$$ under homogeneous Neumann boundary conditions in a bounded and smooth domain \(\Omega \subset \mathbb{R}^{n}\) (\(n\geq 1\)), where the parameters \(\xi ,\chi ,a_{1},a_{2},b_{1},b_{2},\alpha ,\beta ,\gamma >0\).已经证明,如果 \(r_{1}>1\), \(r_{2}>2\) and\(\gamma (\alpha +\beta )<;\那么就存在一些合适的初始数据,使得系统有一个全局的经典解((u,v,w,z)),这个解在(0,infty)中是有边界的。与之前的研究相比,在这项工作中,有界性标准仅由幂指数(r_{1}\)、(r_{2}\)、(α)、(β)、(gamma)和空间维度(n)决定,而不是由系统的系数和初始数据的大小决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信