Free propagation of resonant waves in nonlinear dissipative metamaterials

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alessandro Fortunati, Andrea Arena, Marco Lepidi, Andrea Bacigalupo, Walter Lacarbonara
{"title":"Free propagation of resonant waves in nonlinear dissipative metamaterials","authors":"Alessandro Fortunati, Andrea Arena, Marco Lepidi, Andrea Bacigalupo, Walter Lacarbonara","doi":"10.1098/rspa.2023.0759","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the free propagation problem of resonant and close-to-resonance waves in one-dimensional lattice metamaterials endowed with nonlinearly viscoelastic resonators. The resonators' constitutive and geometric nonlinearities imply a cubic coupling with the lattice. The analytical treatment of the nonlinear wave propagation equations is carried out via a perturbation approach. In particular, after a suitable reformulation of the problem in the Hamiltonian setting, the approach relies on the well-known resonant normal form techniques from Hamiltonian perturbation theory. It is shown how the constructive features of the Lie Series formalism can be exploited in the explicit computation of the approximations of the invariant manifolds. A discussion of the metamaterial dynamic stability, either in the general or in the weak dissipation case, is presented.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0759","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the free propagation problem of resonant and close-to-resonance waves in one-dimensional lattice metamaterials endowed with nonlinearly viscoelastic resonators. The resonators' constitutive and geometric nonlinearities imply a cubic coupling with the lattice. The analytical treatment of the nonlinear wave propagation equations is carried out via a perturbation approach. In particular, after a suitable reformulation of the problem in the Hamiltonian setting, the approach relies on the well-known resonant normal form techniques from Hamiltonian perturbation theory. It is shown how the constructive features of the Lie Series formalism can be exploited in the explicit computation of the approximations of the invariant manifolds. A discussion of the metamaterial dynamic stability, either in the general or in the weak dissipation case, is presented.

非线性耗散超材料中共振波的自由传播
本文讨论了共振波和接近共振波在装有非线性粘弹性谐振器的一维晶格超材料中的自由传播问题。谐振器的构成和几何非线性意味着与晶格的立方耦合。非线性波传播方程的分析处理是通过扰动方法进行的。特别是,在哈密顿设置中对问题进行适当重述后,该方法依赖于哈密顿扰动理论中著名的共振法线形式技术。研究表明,在显式计算不变流形的近似值时,如何利用列数列形式主义的构造特征。此外,还讨论了超材料在一般或弱耗散情况下的动态稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信