Alessandro Fortunati, Andrea Arena, Marco Lepidi, Andrea Bacigalupo, Walter Lacarbonara
{"title":"Free propagation of resonant waves in nonlinear dissipative metamaterials","authors":"Alessandro Fortunati, Andrea Arena, Marco Lepidi, Andrea Bacigalupo, Walter Lacarbonara","doi":"10.1098/rspa.2023.0759","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the free propagation problem of resonant and close-to-resonance waves in one-dimensional lattice metamaterials endowed with nonlinearly viscoelastic resonators. The resonators' constitutive and geometric nonlinearities imply a cubic coupling with the lattice. The analytical treatment of the nonlinear wave propagation equations is carried out via a perturbation approach. In particular, after a suitable reformulation of the problem in the Hamiltonian setting, the approach relies on the well-known resonant normal form techniques from Hamiltonian perturbation theory. It is shown how the constructive features of the Lie Series formalism can be exploited in the explicit computation of the approximations of the invariant manifolds. A discussion of the metamaterial dynamic stability, either in the general or in the weak dissipation case, is presented.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0759","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the free propagation problem of resonant and close-to-resonance waves in one-dimensional lattice metamaterials endowed with nonlinearly viscoelastic resonators. The resonators' constitutive and geometric nonlinearities imply a cubic coupling with the lattice. The analytical treatment of the nonlinear wave propagation equations is carried out via a perturbation approach. In particular, after a suitable reformulation of the problem in the Hamiltonian setting, the approach relies on the well-known resonant normal form techniques from Hamiltonian perturbation theory. It is shown how the constructive features of the Lie Series formalism can be exploited in the explicit computation of the approximations of the invariant manifolds. A discussion of the metamaterial dynamic stability, either in the general or in the weak dissipation case, is presented.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.