An adaptive continuous–discontinuous approach for the analysis of phase field fracture using mesh refinement and coarsening schemes and octree-based trimmed hexahedral meshes
IF 3.7 2区 工程技术Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"An adaptive continuous–discontinuous approach for the analysis of phase field fracture using mesh refinement and coarsening schemes and octree-based trimmed hexahedral meshes","authors":"Ho-Young Kim, Hyun-Gyu Kim","doi":"10.1007/s00466-024-02472-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a novel adaptive continuous–discontinuous approach for the analysis of phase field fracture. An initial trimmed hexahedral (TH) mesh is created by cutting a hexahedral background grid with the boundary of the solid domain. Octree-based adaptive mesh refinement is performed on the initial TH mesh based on an energy-based criterion to accurately resolve the damage evolution along the phase field crack. Critical damage isosurfaces of the phase field are used to convert fully developed phase field cracks into discontinuous discrete cracks. Mesh coarsening is also performed along the discontinuous discrete cracks to reduce the computational cost. Three-dimensional problems of quasi-brittle fracture are investigated to verify the effectiveness and efficiency of the present adaptive continuous–discontinuous approach for the analysis of phase field fracture.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"18 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02472-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a novel adaptive continuous–discontinuous approach for the analysis of phase field fracture. An initial trimmed hexahedral (TH) mesh is created by cutting a hexahedral background grid with the boundary of the solid domain. Octree-based adaptive mesh refinement is performed on the initial TH mesh based on an energy-based criterion to accurately resolve the damage evolution along the phase field crack. Critical damage isosurfaces of the phase field are used to convert fully developed phase field cracks into discontinuous discrete cracks. Mesh coarsening is also performed along the discontinuous discrete cracks to reduce the computational cost. Three-dimensional problems of quasi-brittle fracture are investigated to verify the effectiveness and efficiency of the present adaptive continuous–discontinuous approach for the analysis of phase field fracture.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.