Mixed-formulation with non-penetration constraint for planar composite beams in partial interaction

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Pisey Keo, Thaileng Oeng, Mohammed Hjiaj
{"title":"Mixed-formulation with non-penetration constraint for planar composite beams in partial interaction","authors":"Pisey Keo, Thaileng Oeng, Mohammed Hjiaj","doi":"10.1007/s00466-024-02476-2","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new mixed finite element model for material and geometric non-linear analysis of composite beams in partial interaction taking into account the non-penetration condition between layers. The Hu–Washizu functional with three independent fields is chosen for the developed mixed formulation. The force fields in the connection are chosen as the redundant forces and approximated using interpolation functions. The remaining force fields are obtained from solving equilibrium equations so that the element equlibrium is verified. Nevertheless, the compatibility as well as the constitutive law is satisfied only in a weak sense. The geometric non-linearity is taken into account by adopting the co-rotational approach. In this paper, the contact condition is imposed at the element level. Augmented Lagrangian method with Uzawa iteration algorithm is used to solve the contact problem. It has been shown that the proposed mixed formulation gives a more accurate result with less elements comparing to classical displacement based model. Besides, the buckling behaviour of delaminated two-layered composite columns has been studied by using the developed mixed formulation model. It has been observed that the buckling strength of the composite column can be overestimated if the uplift is not considered in the model.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"215 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02476-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new mixed finite element model for material and geometric non-linear analysis of composite beams in partial interaction taking into account the non-penetration condition between layers. The Hu–Washizu functional with three independent fields is chosen for the developed mixed formulation. The force fields in the connection are chosen as the redundant forces and approximated using interpolation functions. The remaining force fields are obtained from solving equilibrium equations so that the element equlibrium is verified. Nevertheless, the compatibility as well as the constitutive law is satisfied only in a weak sense. The geometric non-linearity is taken into account by adopting the co-rotational approach. In this paper, the contact condition is imposed at the element level. Augmented Lagrangian method with Uzawa iteration algorithm is used to solve the contact problem. It has been shown that the proposed mixed formulation gives a more accurate result with less elements comparing to classical displacement based model. Besides, the buckling behaviour of delaminated two-layered composite columns has been studied by using the developed mixed formulation model. It has been observed that the buckling strength of the composite column can be overestimated if the uplift is not considered in the model.

Abstract Image

部分相互作用平面复合梁的非穿透约束混合公式
本文提出了一种新的混合有限元模型,用于部分相互作用复合梁的材料和几何非线性分析,并考虑了层间非穿透条件。所开发的混合模型选择了具有三个独立力场的 Hu-Washizu 函数。连接中的力场被选为冗余力,并使用插值函数进行近似。其余力场通过求解平衡方程获得,从而验证了元素公式。然而,相容性和构成法则仅在微弱的意义上得到满足。通过采用共转方法,几何非线性得到了考虑。本文在元素级施加了接触条件。采用乌泽迭代算法的增量拉格朗日法来解决接触问题。结果表明,与传统的基于位移的模型相比,所提出的混合公式以更少的元素给出了更精确的结果。此外,还使用所开发的混合公式模型研究了分层双层复合材料柱的屈曲行为。研究发现,如果模型中不考虑上浮,复合材料柱的屈曲强度可能会被高估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信