Karthik Kantipudi, Jingwen Gu, Vy Bui, Hang Yu, Stefan Jaeger, Ziv Yaniv
{"title":"Automated Pulmonary Tuberculosis Severity Assessment on Chest X-rays","authors":"Karthik Kantipudi, Jingwen Gu, Vy Bui, Hang Yu, Stefan Jaeger, Ziv Yaniv","doi":"10.1007/s10278-024-01052-7","DOIUrl":null,"url":null,"abstract":"<p>According to the 2022 World Health Organization's Global Tuberculosis (TB) report, an estimated 10.6 million people fell ill with TB, and 1.6 million died from the disease in 2021. In addition, 2021 saw a reversal of a decades-long trend of declining TB infections and deaths, with an estimated increase of 4.5% in the number of people who fell ill with TB compared to 2020, and an estimated yearly increase of 450,000 cases of drug resistant TB. Estimating the severity of pulmonary TB using frontal chest X-rays (CXR) can enable better resource allocation in resource constrained settings and monitoring of treatment response, enabling prompt treatment modifications if disease severity does not decrease over time. The Timika score is a clinically used TB severity score based on a CXR reading. This work proposes and evaluates three deep learning-based approaches for predicting the Timika score with varying levels of explainability. The first approach uses two deep learning-based models, one to explicitly detect lesion regions using YOLOV5n and another to predict the presence of cavitation using DenseNet121, which are then utilized in score calculation. The second approach uses a DenseNet121-based regression model to directly predict the affected lung percentage and another to predict cavitation presence using a DenseNet121-based classification model. Finally, the third approach directly predicts the Timika score using a DenseNet121-based regression model. The best performance is achieved by the second approach with a mean absolute error of 13-14% and a Pearson correlation of 0.7-0.84 using three held-out datasets for evaluating generalization.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"95 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01052-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
According to the 2022 World Health Organization's Global Tuberculosis (TB) report, an estimated 10.6 million people fell ill with TB, and 1.6 million died from the disease in 2021. In addition, 2021 saw a reversal of a decades-long trend of declining TB infections and deaths, with an estimated increase of 4.5% in the number of people who fell ill with TB compared to 2020, and an estimated yearly increase of 450,000 cases of drug resistant TB. Estimating the severity of pulmonary TB using frontal chest X-rays (CXR) can enable better resource allocation in resource constrained settings and monitoring of treatment response, enabling prompt treatment modifications if disease severity does not decrease over time. The Timika score is a clinically used TB severity score based on a CXR reading. This work proposes and evaluates three deep learning-based approaches for predicting the Timika score with varying levels of explainability. The first approach uses two deep learning-based models, one to explicitly detect lesion regions using YOLOV5n and another to predict the presence of cavitation using DenseNet121, which are then utilized in score calculation. The second approach uses a DenseNet121-based regression model to directly predict the affected lung percentage and another to predict cavitation presence using a DenseNet121-based classification model. Finally, the third approach directly predicts the Timika score using a DenseNet121-based regression model. The best performance is achieved by the second approach with a mean absolute error of 13-14% and a Pearson correlation of 0.7-0.84 using three held-out datasets for evaluating generalization.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.