Performance of Diaphragm Walls during Ultra-Deep Excavations in Karst Areas: Field Monitoring Analysis

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Xingzhong Nong, Yanhong Wang, Benhai Lin, Wentian Xu, Wuzhang Luo, Ren Tang
{"title":"Performance of Diaphragm Walls during Ultra-Deep Excavations in Karst Areas: Field Monitoring Analysis","authors":"Xingzhong Nong, Yanhong Wang, Benhai Lin, Wentian Xu, Wuzhang Luo, Ren Tang","doi":"10.1155/2024/5834253","DOIUrl":null,"url":null,"abstract":"Deep foundation pit excavations have become more extensive for the construction of underground spaces with rapid urbanization. Diaphragm walls are commonly used to support deep excavations. However, due to the complex geological conditions in karst areas, construction accidents frequently occur during the excavation of foundation pits. This study aims to investigate the performance of diaphragm walls in karst areas through field monitoring analysis. A kick-in deformation mode of the diaphragm wall is revealed during the foundation pit excavation. Furthermore, the results show that the diaphragm walls present multiple deformation modes rather than a single mode. Additionally, this study proposes a method to calculate the lateral displacement of the diaphragm walls at different depths. It is found that the karst caves have a considerable impact on the stability of diaphragm walls, as demonstrated by their lateral displacement. The hidden karst caves reduce the bearing capacity of the bedrock, rendering it insufficient to resist the active earth pressure. As a result, the bottom of the diaphragm wall is kicked into the foundation pit, causing significant lateral displacement and posing risks during excavation. The findings of this study contribute to the design and construction of similar excavations in karst areas.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5834253","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep foundation pit excavations have become more extensive for the construction of underground spaces with rapid urbanization. Diaphragm walls are commonly used to support deep excavations. However, due to the complex geological conditions in karst areas, construction accidents frequently occur during the excavation of foundation pits. This study aims to investigate the performance of diaphragm walls in karst areas through field monitoring analysis. A kick-in deformation mode of the diaphragm wall is revealed during the foundation pit excavation. Furthermore, the results show that the diaphragm walls present multiple deformation modes rather than a single mode. Additionally, this study proposes a method to calculate the lateral displacement of the diaphragm walls at different depths. It is found that the karst caves have a considerable impact on the stability of diaphragm walls, as demonstrated by their lateral displacement. The hidden karst caves reduce the bearing capacity of the bedrock, rendering it insufficient to resist the active earth pressure. As a result, the bottom of the diaphragm wall is kicked into the foundation pit, causing significant lateral displacement and posing risks during excavation. The findings of this study contribute to the design and construction of similar excavations in karst areas.
岩溶地区超深挖掘期间地下连续墙的性能:现场监测分析
随着城市化进程的加快,为建造地下空间而进行的深基坑挖掘工程越来越广泛。地下连续墙通常用于支撑深基坑开挖。然而,由于岩溶地区地质条件复杂,基坑开挖过程中经常发生施工事故。本研究旨在通过现场监测分析,研究岩溶地区地下连续墙的性能。在基坑开挖过程中,发现了地下连续墙的踢入变形模式。此外,研究结果表明地下连续墙存在多种变形模式,而非单一模式。此外,本研究还提出了一种计算不同深度地下连续墙侧向位移的方法。研究发现,岩溶洞穴对地下连续墙的稳定性有相当大的影响,其侧向位移就证明了这一点。隐蔽的岩溶洞穴降低了基岩的承载能力,使其不足以抵抗活动土压力。因此,地下连续墙的底部会被踢入基坑,造成巨大的横向位移,并在挖掘过程中带来风险。本研究的结果有助于岩溶地区类似挖掘工程的设计和施工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信