{"title":"Mapping Soil Textural Fractions at Regional Scale Based on Local Morphometric Variables Using a Hybrid Approach (Case Study: Khuzestan Province, Iran)","authors":"Javad Khanifar","doi":"10.1007/s13369-024-08961-3","DOIUrl":null,"url":null,"abstract":"<p>Local morphometric variables (LMVs) are frequently found as weaker predictors than other environmental covariates in digital soil mapping. This study tested and evaluated the performance of a hybrid approach combining gradient boosted regression trees (GBRT) and regularized regression (RR) algorithms in predicting soil textural fractions using a set of LMVs in Khuzestan province, Iran. Here five LMVs (slope gradient, slope aspect, horizontal curvature, vertical curvature, and contour geodesic torsion) were derived from a spheroidal equal-angular DEM as original predictors. The results demonstrated that the hybrid approach improved prediction accuracy for sand, clay, and silt contents by an average of 56% compared to the GBRT models. The importance analysis revealed the significant contribution of tree-based variables obtained from decomposing GBRT models in predicting soil textural fractions. This approach could be recommended for digital soil mapping, particularly in situations of limited environmental covariates or geomorphometric techniques that cannot be easily applied.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-08961-3","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Local morphometric variables (LMVs) are frequently found as weaker predictors than other environmental covariates in digital soil mapping. This study tested and evaluated the performance of a hybrid approach combining gradient boosted regression trees (GBRT) and regularized regression (RR) algorithms in predicting soil textural fractions using a set of LMVs in Khuzestan province, Iran. Here five LMVs (slope gradient, slope aspect, horizontal curvature, vertical curvature, and contour geodesic torsion) were derived from a spheroidal equal-angular DEM as original predictors. The results demonstrated that the hybrid approach improved prediction accuracy for sand, clay, and silt contents by an average of 56% compared to the GBRT models. The importance analysis revealed the significant contribution of tree-based variables obtained from decomposing GBRT models in predicting soil textural fractions. This approach could be recommended for digital soil mapping, particularly in situations of limited environmental covariates or geomorphometric techniques that cannot be easily applied.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.