The Mumford Dynamical System and Hyperelliptic Kleinian Functions

IF 0.6 4区 数学 Q3 MATHEMATICS
V. M. Buchstaber
{"title":"The Mumford Dynamical System and Hyperelliptic Kleinian Functions","authors":"V. M. Buchstaber","doi":"10.1134/S0016266323040032","DOIUrl":null,"url":null,"abstract":"<p> We develop a differential-algebraic theory of the Mumford dynamical system. In the framework of this theory, we introduce the <span>\\((P,Q)\\)</span>-recursion, which defines a sequence of functions <span>\\(P_1,P_2,\\ldots\\)</span> given the first function <span>\\(P_1\\)</span> of this sequence and a sequence of parameters <span>\\(h_1,h_2,\\dots\\)</span>. The general solution of the <span>\\((P,Q)\\)</span>-recursion is shown to give a solution for the parametric graded Korteweg–de Vries hierarchy. We prove that all solutions of the Mumford dynamical <span>\\(g\\)</span>-system are determined by the <span>\\((P,Q)\\)</span>-recursion under the condition <span>\\(P_{g+1} = 0\\)</span>, which is equivalent to an ordinary nonlinear differential equation of order <span>\\(2g\\)</span> for the function <span>\\(P_1\\)</span>. Reduction of the <span>\\(g\\)</span>-system of Mumford to the Buchstaber–Enolskii–Leykin dynamical system is described explicitly, and its explicit <span>\\(2g\\)</span>-parameter solution in hyperelliptic Klein functions is presented. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323040032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a differential-algebraic theory of the Mumford dynamical system. In the framework of this theory, we introduce the \((P,Q)\)-recursion, which defines a sequence of functions \(P_1,P_2,\ldots\) given the first function \(P_1\) of this sequence and a sequence of parameters \(h_1,h_2,\dots\). The general solution of the \((P,Q)\)-recursion is shown to give a solution for the parametric graded Korteweg–de Vries hierarchy. We prove that all solutions of the Mumford dynamical \(g\)-system are determined by the \((P,Q)\)-recursion under the condition \(P_{g+1} = 0\), which is equivalent to an ordinary nonlinear differential equation of order \(2g\) for the function \(P_1\). Reduction of the \(g\)-system of Mumford to the Buchstaber–Enolskii–Leykin dynamical system is described explicitly, and its explicit \(2g\)-parameter solution in hyperelliptic Klein functions is presented.

芒福德动力系统和超椭圆克莱因函数
摘要 我们发展了芒福德动力系统的微分代数理论。在这一理论的框架内,我们引入了((P,Q)\)-递归,它定义了一个函数序列(P_1,P_2,\ldots),给定了这个序列的第一个函数(P_1)和一个参数序列(h_1,h_2,\dots)。((P,Q)\)的一般解-递归的一般解给出了参数分级 Korteweg-de Vries 层次的解。我们证明,在 \((P,Q)\) -递归的条件下,芒福德动力学 \(g\) -系统的所有解都是由\((P,Q)\) -递归决定的。-条件下的(P_{g+1} = 0)递归决定的,这等价于函数 (P_1)的阶(2g)的普通非线性微分方程。将 Mumford 的 \(g\) - 系统还原为 Buchstaber-Enolskii-Leykin 动力系统,并给出了其在超椭圆 Klein 函数中的明确 \(2g\) - 参数解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信