Entropy, virtual Abelianness and Shannon orbit equivalence

Pub Date : 2024-04-02 DOI:10.1017/etds.2024.26
DAVID KERR, HANFENG LI
{"title":"Entropy, virtual Abelianness and Shannon orbit equivalence","authors":"DAVID KERR, HANFENG LI","doi":"10.1017/etds.2024.26","DOIUrl":null,"url":null,"abstract":"<p>We prove that if two free probability-measure-preserving (p.m.p.) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Z}$</span></span></img></span></span>-actions are Shannon orbit equivalent, then they have the same entropy. The argument also applies more generally to yield the same conclusion for free p.m.p. actions of finitely generated virtually Abelian groups. Together with the isomorphism theorems of Ornstein and Ornstein–Weiss and the entropy invariance results of Austin and Kerr–Li in the non-virtually-cyclic setting, this shows that two Bernoulli actions of any non-locally-finite countably infinite amenable group are Shannon orbit equivalent if and only if they are measure conjugate. We also show, at the opposite end of the stochastic spectrum, that every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Z}$</span></span></img></span></span>-odometer is Shannon orbit equivalent to the universal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Z}$</span></span></img></span></span>-odometer.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that if two free probability-measure-preserving (p.m.p.) Abstract Image${\mathbb Z}$-actions are Shannon orbit equivalent, then they have the same entropy. The argument also applies more generally to yield the same conclusion for free p.m.p. actions of finitely generated virtually Abelian groups. Together with the isomorphism theorems of Ornstein and Ornstein–Weiss and the entropy invariance results of Austin and Kerr–Li in the non-virtually-cyclic setting, this shows that two Bernoulli actions of any non-locally-finite countably infinite amenable group are Shannon orbit equivalent if and only if they are measure conjugate. We also show, at the opposite end of the stochastic spectrum, that every Abstract Image${\mathbb Z}$-odometer is Shannon orbit equivalent to the universal Abstract Image${\mathbb Z}$-odometer.

分享
查看原文
熵、虚拟阿贝尔性和香农轨道等价性
我们证明,如果两个自由概率-度量保留(p.m.p. )${/mathbb Z}$作用是香农轨道等价的,那么它们具有相同的熵。这个论证也适用于有限生成的虚拟阿贝尔群的自由p.m.p.作用。结合奥恩斯坦和奥恩斯坦-韦斯的同构定理,以及奥斯汀和克尔-李在非虚拟循环背景下的熵不变性结果,这表明任何非局部有限可数无限可调和群的两个伯努利作用,只有当且仅当它们是度量共轭的时候,才是香农轨道等价的。我们还证明,在随机频谱的另一端,每个 ${\mathbb Z}$-odometer 都与通用的 ${\mathbb Z}$-odometer 是香农轨道等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信