Deformation capacity of fresh cement pastes

IF 2.2 4区 工程技术 Q2 MECHANICS
Y. El Bitouri
{"title":"Deformation capacity of fresh cement pastes","authors":"Y. El Bitouri","doi":"10.1007/s13367-024-00090-5","DOIUrl":null,"url":null,"abstract":"<div><p>The deformation capacity conditions several processes in cement-based materials, including workability and structural build-up. However, the origins of this deformation capacity present some ambiguities. This paper aims to contribute to improving the comprehension of the deformation capacity of fresh cement pastes. For this, the effect of water-to-cement ratio (w/c) and superplasticizer (SP) dosage on the viscoelastic properties of cement paste is examined using oscillatory rheology and yield stress measurements. It appears that water to cement ratio affects slightly the critical strain at the end of the linear viscoelastic domain (LVED) and strongly the storage modulus. The addition of superplasticizer seems to have a strong effect on the critical strain. In addition, it was shown that the critical strain at the end of the LVED is associated with strong physical forces (colloidal forces enhanced by early hydrates formation), while the transition strain at the flow onset is due to large structural reorganizations.</p></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"36 2","pages":"99 - 108"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-024-00090-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The deformation capacity conditions several processes in cement-based materials, including workability and structural build-up. However, the origins of this deformation capacity present some ambiguities. This paper aims to contribute to improving the comprehension of the deformation capacity of fresh cement pastes. For this, the effect of water-to-cement ratio (w/c) and superplasticizer (SP) dosage on the viscoelastic properties of cement paste is examined using oscillatory rheology and yield stress measurements. It appears that water to cement ratio affects slightly the critical strain at the end of the linear viscoelastic domain (LVED) and strongly the storage modulus. The addition of superplasticizer seems to have a strong effect on the critical strain. In addition, it was shown that the critical strain at the end of the LVED is associated with strong physical forces (colloidal forces enhanced by early hydrates formation), while the transition strain at the flow onset is due to large structural reorganizations.

Abstract Image

Abstract Image

新拌水泥浆的变形能力
变形能力决定了水泥基材料的几个过程,包括可加工性和结构的形成。然而,这种变形能力的来源并不明确。本文旨在帮助人们更好地理解新拌水泥浆的变形能力。为此,本文使用振荡流变学和屈服应力测量方法研究了水灰比(w/c)和超塑化剂(SP)用量对水泥浆粘弹性能的影响。结果表明,水灰比对线性粘弹性域(LVED)末端的临界应变影响较小,对储存模量影响较大。添加超塑化剂似乎对临界应变有很大影响。此外,研究还表明,线性粘弹性域末端的临界应变与强大的物理力(早期水合物形成所增强的胶体力)有关,而流动开始时的过渡应变则是由于巨大的结构重组所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korea-Australia Rheology Journal
Korea-Australia Rheology Journal 工程技术-高分子科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信