THREE SURPRISING INSTANCES OF DIVIDING

GABRIEL CONANT, ALEX KRUCKMAN
{"title":"THREE SURPRISING INSTANCES OF DIVIDING","authors":"GABRIEL CONANT, ALEX KRUCKMAN","doi":"10.1017/jsl.2024.20","DOIUrl":null,"url":null,"abstract":"<p>We give three counterexamples to the folklore claim that in an arbitrary theory, if a complete type <span>p</span> over a set <span>B</span> does not divide over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412093917073-0582:S0022481224000203:S0022481224000203_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C\\subseteq B$</span></span></img></span></span>, then no extension of <span>p</span> to a complete type over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412093917073-0582:S0022481224000203:S0022481224000203_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {acl}(B)$</span></span></img></span></span> divides over <span>C</span>. Two of our examples are also the first known theories where all sets are extension bases for nonforking, but forking and dividing differ for complete types (answering a question of Adler). One example is an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412093917073-0582:S0022481224000203:S0022481224000203_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {NSOP}_1$</span></span></img></span></span> theory with a complete type that forks, but does not divide, over a model (answering a question of d’Elbée). Moreover, dividing independence fails to imply M-independence in this example (which refutes another folklore claim). In addition to these counterexamples, we summarize various related properties of dividing that are still true. We also address consequences for previous literature, including an earlier unpublished result about forking and dividing in free amalgamation theories, and some claims about dividing in the theory of generic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412093917073-0582:S0022481224000203:S0022481224000203_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$K_{m,n}$</span></span></img></span></span>-free incidence structures.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give three counterexamples to the folklore claim that in an arbitrary theory, if a complete type p over a set B does not divide over Abstract Image$C\subseteq B$, then no extension of p to a complete type over Abstract Image$\operatorname {acl}(B)$ divides over C. Two of our examples are also the first known theories where all sets are extension bases for nonforking, but forking and dividing differ for complete types (answering a question of Adler). One example is an Abstract Image$\mathrm {NSOP}_1$ theory with a complete type that forks, but does not divide, over a model (answering a question of d’Elbée). Moreover, dividing independence fails to imply M-independence in this example (which refutes another folklore claim). In addition to these counterexamples, we summarize various related properties of dividing that are still true. We also address consequences for previous literature, including an earlier unpublished result about forking and dividing in free amalgamation theories, and some claims about dividing in the theory of generic Abstract Image$K_{m,n}$-free incidence structures.

三个令人吃惊的分割实例
我们给出了三个反例:在任意理论中,如果在集合B上的完整类型p不在$C\subseteq B$上分裂,那么在$\operatorname {acl}(B)$ 上的完整类型p的扩展就不会在C上分裂。我们的两个例子也是第一个已知的理论,在这些理论中,所有集合都是不分裂的扩展基础,但是对于完整类型来说,分裂和分裂是不同的(回答了阿德勒的一个问题)。其中一个例子是一个具有完整类型的 $\mathrm {NSOP}_1$理论,它在一个模型上分叉,但不分裂(回答了德埃尔贝的一个问题)。此外,在这个例子中,分裂独立性并不意味着M独立性(这反驳了另一个民间说法)。除了这些反例之外,我们还总结了除法仍然成立的各种相关性质。我们还讨论了以前文献的后果,包括早先未发表的关于自由合并理论中分叉和分割的结果,以及关于泛型$K_{m,n}$无入射结构理论中分割的一些说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信