Tensor-guided learning for image denoising using anisotropic PDEs

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fakhr-eddine Limami, Aissam Hadri, Lekbir Afraites, Amine Laghrib
{"title":"Tensor-guided learning for image denoising using anisotropic PDEs","authors":"Fakhr-eddine Limami, Aissam Hadri, Lekbir Afraites, Amine Laghrib","doi":"10.1007/s00138-024-01532-4","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce an advanced approach for enhanced image denoising using an improved space-variant anisotropic Partial Differential Equation (PDE) framework. Leveraging Weickert-type operators, this method relies on two critical parameters: <span>\\(\\lambda \\)</span> and <span>\\(\\theta \\)</span>, defining local image geometry and smoothing strength. We propose an automatic parameter estimation technique rooted in PDE-constrained optimization, incorporating supplementary information from the original clean image. By combining these components, our approach achieves superior image denoising, pushing the boundaries of image enhancement methods. We employed a modified Alternating Direction Method of Multipliers (ADMM) procedure for numerical optimization, demonstrating its efficacy through thorough assessments and affirming its superior performance compared to alternative denoising methods.\n</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"44 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01532-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce an advanced approach for enhanced image denoising using an improved space-variant anisotropic Partial Differential Equation (PDE) framework. Leveraging Weickert-type operators, this method relies on two critical parameters: \(\lambda \) and \(\theta \), defining local image geometry and smoothing strength. We propose an automatic parameter estimation technique rooted in PDE-constrained optimization, incorporating supplementary information from the original clean image. By combining these components, our approach achieves superior image denoising, pushing the boundaries of image enhancement methods. We employed a modified Alternating Direction Method of Multipliers (ADMM) procedure for numerical optimization, demonstrating its efficacy through thorough assessments and affirming its superior performance compared to alternative denoising methods.

Abstract Image

利用各向异性 PDEs 进行图像去噪的张量引导学习
在本文中,我们介绍了一种利用改进的空间变异各向异性偏微分方程(PDE)框架增强图像去噪的先进方法。利用魏克特型算子,该方法依赖于两个关键参数:\(\lambda \) 和 (\theta \),这两个参数定义了局部图像的几何形状和平滑强度。我们提出了一种植根于 PDE 受限优化的自动参数估计技术,并结合了来自原始干净图像的补充信息。通过结合这些组件,我们的方法实现了卓越的图像去噪,推动了图像增强方法的发展。我们采用了改进的交替方向乘法(ADMM)程序进行数值优化,通过全面评估证明了其有效性,并肯定了它与其他去噪方法相比的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信