An extension of the weighted geometric mean in unital JB-algebras

IF 1.2 3区 数学 Q1 MATHEMATICS
A. G. Ghazanfari, S. Malekinejad, M. Sababheh
{"title":"An extension of the weighted geometric mean in unital JB-algebras","authors":"A. G. Ghazanfari,&nbsp;S. Malekinejad,&nbsp;M. Sababheh","doi":"10.1007/s43034-024-00330-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathcal {A}}\\)</span> be a unital <i>JB</i>-algebra and <span>\\(A,B\\in {\\mathcal {A}}\\)</span>. The weighted geometric mean <span>\\(A\\sharp _r B\\)</span> for <span>\\(A,B\\in {\\mathcal {A}}\\)</span> has been recently defined for <span>\\(r\\in [0,1].\\)</span> In this work, we extend the weighted geometric mean <span>\\(A\\sharp _r B\\)</span>, from <span>\\(r\\in [0,1]\\)</span> to <span>\\(r\\in (-1, 0)\\cup (1, 2)\\)</span>. We will notice that many results will be reversed when the domain of <i>r</i> change from [0, 1] to <span>\\((-1,0)\\)</span> or (1, 2). We also introduce the Heinz and Heron means of elements in <span>\\({\\mathcal {A}}\\)</span>, and extend some known inequalities involving them.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00330-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\mathcal {A}}\) be a unital JB-algebra and \(A,B\in {\mathcal {A}}\). The weighted geometric mean \(A\sharp _r B\) for \(A,B\in {\mathcal {A}}\) has been recently defined for \(r\in [0,1].\) In this work, we extend the weighted geometric mean \(A\sharp _r B\), from \(r\in [0,1]\) to \(r\in (-1, 0)\cup (1, 2)\). We will notice that many results will be reversed when the domain of r change from [0, 1] to \((-1,0)\) or (1, 2). We also introduce the Heinz and Heron means of elements in \({\mathcal {A}}\), and extend some known inequalities involving them.

单元素 JB 算法中加权几何平均数的扩展
让 \({\mathcal {A}}\) 是一个空JB代数,并且 \(A,B\in {\mathcal {A}}\) 是一个空JB代数。在这项工作中,我们将加权几何平均数从(r/in [0,1])扩展到(r/in (-1, 0)/cup (1, 2))。我们会注意到,当 r 的域从 [0, 1] 变为 ((-1,0)\cup (1, 2))时,很多结果都会颠倒过来。我们还介绍了 \({\mathcal {A}}\) 中元素的 Heinz 和 Heron 平均值,并扩展了一些涉及它们的已知不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信