QFNN-FFD: Quantum Federated Neural Network for Financial Fraud Detection

Nouhaila Innan, Alberto Marchisio, Muhammad Shafique, Mohamed Bennai
{"title":"QFNN-FFD: Quantum Federated Neural Network for Financial Fraud Detection","authors":"Nouhaila Innan, Alberto Marchisio, Muhammad Shafique, Mohamed Bennai","doi":"arxiv-2404.02595","DOIUrl":null,"url":null,"abstract":"This study introduces the Quantum Federated Neural Network for Financial\nFraud Detection (QFNN-FFD), a cutting-edge framework merging Quantum Machine\nLearning (QML) and quantum computing with Federated Learning (FL) to innovate\nfinancial fraud detection. Using quantum technologies' computational power and\nFL's data privacy, QFNN-FFD presents a secure, efficient method for identifying\nfraudulent transactions. Implementing a dual-phase training model across\ndistributed clients surpasses existing methods in performance. QFNN-FFD\nsignificantly improves fraud detection and ensures data confidentiality,\nmarking a significant advancement in fintech solutions and establishing a new\nstandard for privacy-focused fraud detection.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the Quantum Federated Neural Network for Financial Fraud Detection (QFNN-FFD), a cutting-edge framework merging Quantum Machine Learning (QML) and quantum computing with Federated Learning (FL) to innovate financial fraud detection. Using quantum technologies' computational power and FL's data privacy, QFNN-FFD presents a secure, efficient method for identifying fraudulent transactions. Implementing a dual-phase training model across distributed clients surpasses existing methods in performance. QFNN-FFD significantly improves fraud detection and ensures data confidentiality, marking a significant advancement in fintech solutions and establishing a new standard for privacy-focused fraud detection.
QFNN-FFD:用于金融欺诈检测的量子联邦神经网络
本研究介绍了用于金融欺诈检测的量子联邦神经网络(QFNN-FFD),这是一个将量子机器学习(QML)和量子计算与联邦学习(FL)相结合的前沿框架,用于创新金融欺诈检测。利用量子技术的计算能力和联邦学习的数据隐私性,QFNN-FFD 提出了一种安全、高效的方法来识别欺诈交易。在分布式客户端上实施双阶段训练模型,在性能上超越了现有方法。QFNN-FFD 显著提高了欺诈检测能力,确保了数据的保密性,标志着金融技术解决方案的重大进步,并为注重隐私的欺诈检测建立了新标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信