Entropy generation due to MHD Falkner–Skan flow of Casson fluid over a wedge: A numerical study

Muhammad N. Abrar, Wang Yun, Mohamed Sharaf
{"title":"Entropy generation due to MHD Falkner–Skan flow of Casson fluid over a wedge: A numerical study","authors":"Muhammad N. Abrar, Wang Yun, Mohamed Sharaf","doi":"10.1002/zamm.202300750","DOIUrl":null,"url":null,"abstract":"This study highlights the significance of entropy generation in the Falkner–Skan flow of Casson fluid past a wedge. To investigate the energy analysis, the governing equations include the heat transport equation in the presence of internal heat source, and the energy transport accounts for heat dissipation using viscous dissipation and Joule heating effect. The mathematical formulation of the problem leads to a set of nonlinear coupled partial differential equations. To obtain a similarity solution, similarity variables are introduced. The resulting differential equations are solved numerically using the shooting technique in conjunction with the Runge–Kutta–Fehlberg 45 (RKF‐45) method. Graphical representations are utilized to demonstrate the physical significance of the relevant parameters. The study analyzes the impact of various parameters on the velocity, temperature, and entropy distributions for three wedge positions: stationary, forward‐moving, and backward‐moving. The results show that an increase in the wedge angle parameter and Casson parameter leads to an increase in fluid velocity, while fluid entropy increases rapidly with an increase in the Brinkmann number, power law Falkner–Skan parameter, and Reynolds number. Moreover, with an increment in the Prandtl and Eckert number, the Nusselt number coefficient decelerates for both static and moving wedge.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study highlights the significance of entropy generation in the Falkner–Skan flow of Casson fluid past a wedge. To investigate the energy analysis, the governing equations include the heat transport equation in the presence of internal heat source, and the energy transport accounts for heat dissipation using viscous dissipation and Joule heating effect. The mathematical formulation of the problem leads to a set of nonlinear coupled partial differential equations. To obtain a similarity solution, similarity variables are introduced. The resulting differential equations are solved numerically using the shooting technique in conjunction with the Runge–Kutta–Fehlberg 45 (RKF‐45) method. Graphical representations are utilized to demonstrate the physical significance of the relevant parameters. The study analyzes the impact of various parameters on the velocity, temperature, and entropy distributions for three wedge positions: stationary, forward‐moving, and backward‐moving. The results show that an increase in the wedge angle parameter and Casson parameter leads to an increase in fluid velocity, while fluid entropy increases rapidly with an increase in the Brinkmann number, power law Falkner–Skan parameter, and Reynolds number. Moreover, with an increment in the Prandtl and Eckert number, the Nusselt number coefficient decelerates for both static and moving wedge.
卡松流体在楔形上的 MHD Falkner-Skan 流动导致的熵产生:数值研究
本研究强调了卡松流体流过楔形体的 Falkner-Skan 流动中熵产生的重要性。为了研究能量分析,治理方程包括存在内部热源时的热量传输方程,能量传输考虑了利用粘性耗散和焦耳加热效应进行的热量耗散。该问题的数学公式是一组非线性耦合偏微分方程。为了获得相似解,引入了相似变量。结合 Runge-Kutta-Fehlberg 45 (RKF-45) 方法,使用射击技术对所产生的微分方程进行数值求解。利用图形表示法展示了相关参数的物理意义。研究分析了静止、向前运动和向后运动三种楔形位置下各种参数对速度、温度和熵分布的影响。结果表明,楔角参数和 Casson 参数的增加会导致流体速度的增加,而流体熵则会随着布林曼数、幂律 Falkner-Skan 参数和雷诺数的增加而迅速增加。此外,随着普朗特数和埃克特数的增加,静态楔形和移动楔形的努塞尔数系数都会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信