Markov decision processes with risk-sensitive criteria: an overview

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Nicole Bäuerle, Anna Jaśkiewicz
{"title":"Markov decision processes with risk-sensitive criteria: an overview","authors":"Nicole Bäuerle, Anna Jaśkiewicz","doi":"10.1007/s00186-024-00857-0","DOIUrl":null,"url":null,"abstract":"<p>The paper provides an overview of the theory and applications of risk-sensitive Markov decision processes. The term ’risk-sensitive’ refers here to the use of the Optimized Certainty Equivalent as a means to measure expectation and risk. This comprises the well-known entropic risk measure and Conditional Value-at-Risk. We restrict our considerations to stationary problems with an infinite time horizon. Conditions are given under which optimal policies exist and solution procedures are explained. We present both the theory when the Optimized Certainty Equivalent is applied recursively as well as the case where it is applied to the cumulated reward. Discounted as well as non-discounted models are reviewed.</p>","PeriodicalId":49862,"journal":{"name":"Mathematical Methods of Operations Research","volume":"94 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00186-024-00857-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper provides an overview of the theory and applications of risk-sensitive Markov decision processes. The term ’risk-sensitive’ refers here to the use of the Optimized Certainty Equivalent as a means to measure expectation and risk. This comprises the well-known entropic risk measure and Conditional Value-at-Risk. We restrict our considerations to stationary problems with an infinite time horizon. Conditions are given under which optimal policies exist and solution procedures are explained. We present both the theory when the Optimized Certainty Equivalent is applied recursively as well as the case where it is applied to the cumulated reward. Discounted as well as non-discounted models are reviewed.

具有风险敏感标准的马尔可夫决策过程:概述
本文概述了风险敏感马尔可夫决策过程的理论和应用。这里所说的 "风险敏感 "是指使用优化确定性等价物来衡量期望和风险。这包括众所周知的熵风险度量和条件风险值。我们只考虑无限时间跨度的静态问题。我们给出了存在最优政策的条件,并解释了求解程序。我们既介绍了递归应用优化确定性等价物的理论,也介绍了将其应用于累积报酬的情况。我们还回顾了贴现和非贴现模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: This peer reviewed journal publishes original and high-quality articles on important mathematical and computational aspects of operations research, in particular in the areas of continuous and discrete mathematical optimization, stochastics, and game theory. Theoretically oriented papers are supposed to include explicit motivations of assumptions and results, while application oriented papers need to contain substantial mathematical contributions. Suggestions for algorithms should be accompanied with numerical evidence for their superiority over state-of-the-art methods. Articles must be of interest for a large audience in operations research, written in clear and correct English, and typeset in LaTeX. A special section contains invited tutorial papers on advanced mathematical or computational aspects of operations research, aiming at making such methodologies accessible for a wider audience. All papers are refereed. The emphasis is on originality, quality, and importance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信