Convergence rate of entropy-regularized multi-marginal optimal transport costs

Luca Nenna, Paul Pegon
{"title":"Convergence rate of entropy-regularized multi-marginal optimal transport costs","authors":"Luca Nenna, Paul Pegon","doi":"10.4153/s0008414x24000257","DOIUrl":null,"url":null,"abstract":"<p>We investigate the convergence rate of multi-marginal optimal transport costs that are regularized with the Boltzmann–Shannon entropy, as the noise parameter <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240404055322598-0693:S0008414X24000257:S0008414X24000257_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\varepsilon $</span></span></img></span></span> tends to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240404055322598-0693:S0008414X24000257:S0008414X24000257_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span>. We establish lower and upper bounds on the difference with the unregularized cost of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240404055322598-0693:S0008414X24000257:S0008414X24000257_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$C\\varepsilon \\log (1/\\varepsilon )+O(\\varepsilon )$</span></span></img></span></span> for some explicit dimensional constants <span>C</span> depending on the marginals and on the ground cost, but not on the optimal transport plans themselves. Upper bounds are obtained for Lipschitz costs or locally semiconcave costs for a finer estimate, and lower bounds for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240404055322598-0693:S0008414X24000257:S0008414X24000257_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}^2$</span></span></img></span></span> costs satisfying some signature condition on the mixed second derivatives that may include degenerate costs, thus generalizing results previously in the two marginals case and for nondegenerate costs. We obtain in particular matching bounds in some typical situations where the optimal plan is deterministic.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the convergence rate of multi-marginal optimal transport costs that are regularized with the Boltzmann–Shannon entropy, as the noise parameter Abstract Image$\varepsilon $ tends to Abstract Image$0$. We establish lower and upper bounds on the difference with the unregularized cost of the form Abstract Image$C\varepsilon \log (1/\varepsilon )+O(\varepsilon )$ for some explicit dimensional constants C depending on the marginals and on the ground cost, but not on the optimal transport plans themselves. Upper bounds are obtained for Lipschitz costs or locally semiconcave costs for a finer estimate, and lower bounds for Abstract Image$\mathscr {C}^2$ costs satisfying some signature condition on the mixed second derivatives that may include degenerate costs, thus generalizing results previously in the two marginals case and for nondegenerate costs. We obtain in particular matching bounds in some typical situations where the optimal plan is deterministic.

熵规则化多边际最优运输成本的收敛率
我们研究了当噪声参数 $\varepsilon $趋于 $0$时,用波尔兹曼-香农熵正则化的多边际最优运输成本的收敛率。对于一些明确的维度常数 C(取决于边际和地面成本,但不取决于最优运输计划本身),我们建立了与非正则化成本的差值下限和上限,其形式为 $C\varepsilon \log (1/varepsilon )+O(\varepsilon )$。我们得到了利普齐兹成本或局部半凹陷成本的上界,以及满足混合二次导数(可能包括退化成本)上某些特征条件的 $mathscr {C}^2$ 成本的下界,从而推广了之前在两个边际情况下以及非退化成本的结果。在最优计划是确定性的一些典型情况下,我们特别得到了匹配边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信