{"title":"Improving the probabilistic drought prediction with soil moisture information under the ensemble streamflow prediction framework","authors":"Gi Joo Kim, Dae Ho Kim, Young-Oh Kim","doi":"10.1007/s00477-024-02710-6","DOIUrl":null,"url":null,"abstract":"<p>Reliable drought prediction should be preceded to prevent damage from potential droughts. In this context, this study developed a hydrological drought prediction method, namely ensemble drought prediction (EDP) to reflect drought-related information under the ensemble streamflow prediction framework. After generating an ensemble of standardized runoff index by converting the ensemble of generated streamflow, the results were adopted as the prior distribution. Then, precipitation forecast and soil moisture were used to update the prior EDP. The EDP + A model included the precipitation forecast with the PDF-ratio method, and the observed soil moisture index was reflected in the former EDP and EDP + A via Bayes’ theorem, resulting in the EDP + S and EDP + AS models. Eight basins in Korea with more than 30 years of observation data were applied with the proposed methodology. As a result, the overall performance of the four EDP models yielded improved results than the climatological prediction. Moreover, reflecting soil moisture yielded improved evaluation metrics during short-term drought predictions, and in basins with larger drainage areas. Finally, the methodology presented in this study was more effective during periods with less intertemporal variabilities.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"30 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02710-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Reliable drought prediction should be preceded to prevent damage from potential droughts. In this context, this study developed a hydrological drought prediction method, namely ensemble drought prediction (EDP) to reflect drought-related information under the ensemble streamflow prediction framework. After generating an ensemble of standardized runoff index by converting the ensemble of generated streamflow, the results were adopted as the prior distribution. Then, precipitation forecast and soil moisture were used to update the prior EDP. The EDP + A model included the precipitation forecast with the PDF-ratio method, and the observed soil moisture index was reflected in the former EDP and EDP + A via Bayes’ theorem, resulting in the EDP + S and EDP + AS models. Eight basins in Korea with more than 30 years of observation data were applied with the proposed methodology. As a result, the overall performance of the four EDP models yielded improved results than the climatological prediction. Moreover, reflecting soil moisture yielded improved evaluation metrics during short-term drought predictions, and in basins with larger drainage areas. Finally, the methodology presented in this study was more effective during periods with less intertemporal variabilities.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.