{"title":"A novel semi data dimension reduction type weighting scheme of the multi-model ensemble for accurate assessment of twenty-first century drought","authors":"Alina Mukhtar, Zulfiqar Ali, Amna Nazeer, Sami Dhahbi, Veysi Kartal, Wejdan Deebani","doi":"10.1007/s00477-024-02723-1","DOIUrl":null,"url":null,"abstract":"<p>Accurately and reliably predicting droughts under multiple models of Global Climate Models (GCMs) is a challenging task. To address this challenge, the Multimodel Ensemble (MME) method has become a valuable tool for merging multiple models and producing more accurate forecasts. This paper aims to enhance drought monitoring modules for the twenty-first century using multiple GCMs. To achieve this goal, the research introduces a new weighing paradigm called the Multimodel Homo-min Pertinence-max Hybrid Weighted Average (MHmPmHWAR) for the accurate aggregation of multiple GCMs. Secondly, the research proposes a new drought index called the Condensed Multimodal Multi-Scalar Standardized Drought Index (CMMSDI). To assess the effectiveness of MHmPmHWAR, the research compared its findings with the Simple Model Average (SMA). In the application, eighteen different GCM models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) were considered at thirty-two grid points of the Tibet Plateau region. Mann–Kendall (MK) test statistics and Steady States Probabilities (SSPs) of Markov chain were used to assess the long-term trend in drought and its classes. The analysis of trends indicated that the number of grid points demonstrating an upward trend was significantly greater than those displaying a downward trend in terms of spatial coverage, at a significance level of 0.05. When examining scenario SSP1-2.6, the probability of moderate wet and normal drought was greater in nearly all temporal scales than other categories. The outcomes of SSP2-4.5 demonstrated that the likelihoods of moderate drought and normal drought were higher than other classifications. Additionally, the results of SSP5-8.5 were comparable to those of SSP2-4.5, underscoring the importance of taking effective actions to alleviate drought impacts in the future. The results demonstrate the effectiveness of the MHmPmHWAR and CMMSDI approaches in predicting droughts under multiple GCMs, which can contribute to effective drought monitoring and management.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"38 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02723-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately and reliably predicting droughts under multiple models of Global Climate Models (GCMs) is a challenging task. To address this challenge, the Multimodel Ensemble (MME) method has become a valuable tool for merging multiple models and producing more accurate forecasts. This paper aims to enhance drought monitoring modules for the twenty-first century using multiple GCMs. To achieve this goal, the research introduces a new weighing paradigm called the Multimodel Homo-min Pertinence-max Hybrid Weighted Average (MHmPmHWAR) for the accurate aggregation of multiple GCMs. Secondly, the research proposes a new drought index called the Condensed Multimodal Multi-Scalar Standardized Drought Index (CMMSDI). To assess the effectiveness of MHmPmHWAR, the research compared its findings with the Simple Model Average (SMA). In the application, eighteen different GCM models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) were considered at thirty-two grid points of the Tibet Plateau region. Mann–Kendall (MK) test statistics and Steady States Probabilities (SSPs) of Markov chain were used to assess the long-term trend in drought and its classes. The analysis of trends indicated that the number of grid points demonstrating an upward trend was significantly greater than those displaying a downward trend in terms of spatial coverage, at a significance level of 0.05. When examining scenario SSP1-2.6, the probability of moderate wet and normal drought was greater in nearly all temporal scales than other categories. The outcomes of SSP2-4.5 demonstrated that the likelihoods of moderate drought and normal drought were higher than other classifications. Additionally, the results of SSP5-8.5 were comparable to those of SSP2-4.5, underscoring the importance of taking effective actions to alleviate drought impacts in the future. The results demonstrate the effectiveness of the MHmPmHWAR and CMMSDI approaches in predicting droughts under multiple GCMs, which can contribute to effective drought monitoring and management.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.