{"title":"Forecasting the amount of domestic waste clearance in Shenzhen with an optimized grey model","authors":"Bo Zeng, Chao Xia, Yingjie Yang","doi":"10.1007/s00477-024-02706-2","DOIUrl":null,"url":null,"abstract":"<p>As a leading economic center in China and an international metropolis, Shenzhen has great significance in promoting sustainable urban development. To predict its amount of domestic waste clearance, a new multivariable grey prediction model with combinatorial optimization of parameters is established in this paper. Firstly, the new model expands the value range of the order <i>r</i> of a grey accumulation generation operator from positive real numbers (R +) to all real numbers (R), which enlarges the optimization space of parameter and has positive significance for improving model performance. Secondly, the dynamic background-value coefficient <i>λ</i> is introduced into the new model to improve the smoothing effect of the nearest neighbor generated sequences. Thirdly, with the objective function of minimizing the mean absolute percentage error (MAPE), the particle swarm optimization (PSO) is employed to optimize parameters <i>r</i> and <i>λ</i> to improve the overall performance of the new model. The new model is used to simulate and predict the amount of domestic waste clearance in Shenzhen, and the MAPE of the new model is only 0.27%, which is far superior to several other similar models. Lastly, the new model is applied to predict the amount of domestic waste clearance in Shenzhen. The results indicate the amount of domestic waste clearance in 2028 could be 9.96 million tons, an increase of 20.58% compared to 2021.This highlights the significant challenge that Shenzhen faces in terms of urban domestic waste treatment. Therefore, some targeted countermeasures and suggestions have been proposed to ensure the sustainable development of Shenzhen's economy and society.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"120 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02706-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
As a leading economic center in China and an international metropolis, Shenzhen has great significance in promoting sustainable urban development. To predict its amount of domestic waste clearance, a new multivariable grey prediction model with combinatorial optimization of parameters is established in this paper. Firstly, the new model expands the value range of the order r of a grey accumulation generation operator from positive real numbers (R +) to all real numbers (R), which enlarges the optimization space of parameter and has positive significance for improving model performance. Secondly, the dynamic background-value coefficient λ is introduced into the new model to improve the smoothing effect of the nearest neighbor generated sequences. Thirdly, with the objective function of minimizing the mean absolute percentage error (MAPE), the particle swarm optimization (PSO) is employed to optimize parameters r and λ to improve the overall performance of the new model. The new model is used to simulate and predict the amount of domestic waste clearance in Shenzhen, and the MAPE of the new model is only 0.27%, which is far superior to several other similar models. Lastly, the new model is applied to predict the amount of domestic waste clearance in Shenzhen. The results indicate the amount of domestic waste clearance in 2028 could be 9.96 million tons, an increase of 20.58% compared to 2021.This highlights the significant challenge that Shenzhen faces in terms of urban domestic waste treatment. Therefore, some targeted countermeasures and suggestions have been proposed to ensure the sustainable development of Shenzhen's economy and society.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.