Comparison of meteorological, hydrological and agricultural droughts for developing a composite drought index over semi-arid Banas River Basin of India
{"title":"Comparison of meteorological, hydrological and agricultural droughts for developing a composite drought index over semi-arid Banas River Basin of India","authors":"Divya Saini, Omvir Singh","doi":"10.1007/s00477-024-02704-4","DOIUrl":null,"url":null,"abstract":"<p>This study attempts to develop a composite index by integrating meteorological, hydrological and agricultural droughts over semi-arid Banas River basin, Rajasthan, India. To affect this, the standardized precipitation index (SPI), streamflow drought index (SDI), and vegetation condition index (VCI) have been used at 1-, 3-, 5-, 9- and 12-month time scales using station and remote sensing-based data for the period 2000 to 2020. To identify the occurrence of above-stated droughts and most vulnerable drought period at different time scales (1-, 3-, 5-, 9- and 12-month) regarding SPI, SDI and VCI has been validated with foodgrains produced and occurrence of historical drought years. This validation has been found significant with SPI-3 (<i>r</i> = − 0.81), SDI-3 (<i>r</i> = − 0.78) and VCI-5 (<i>r</i> = − 0.80) time scales. Subsequently, these time scales have been coalesced using weights obtained from principal component analysis (PCA) to develop the composite drought index (CDI). The annual CDI developed this way has been further validated with foodgrains produced and occurrence of historical drought years. The results of CDI demonstrate the maximum area under mild drought (73 percent) followed by moderate (21 percent) and severe (4 percent), whereas minuscule area has been detected under wet conditions (2 percent). Finally, this study suggests that individual drought types (meteorological, hydrological, agricultural) do not appropriately arrest the drought severity, hence, the usage of multiple droughts based composite index can be more realistic for effective drought assessment and monitoring in hydrologic systems.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"43 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02704-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study attempts to develop a composite index by integrating meteorological, hydrological and agricultural droughts over semi-arid Banas River basin, Rajasthan, India. To affect this, the standardized precipitation index (SPI), streamflow drought index (SDI), and vegetation condition index (VCI) have been used at 1-, 3-, 5-, 9- and 12-month time scales using station and remote sensing-based data for the period 2000 to 2020. To identify the occurrence of above-stated droughts and most vulnerable drought period at different time scales (1-, 3-, 5-, 9- and 12-month) regarding SPI, SDI and VCI has been validated with foodgrains produced and occurrence of historical drought years. This validation has been found significant with SPI-3 (r = − 0.81), SDI-3 (r = − 0.78) and VCI-5 (r = − 0.80) time scales. Subsequently, these time scales have been coalesced using weights obtained from principal component analysis (PCA) to develop the composite drought index (CDI). The annual CDI developed this way has been further validated with foodgrains produced and occurrence of historical drought years. The results of CDI demonstrate the maximum area under mild drought (73 percent) followed by moderate (21 percent) and severe (4 percent), whereas minuscule area has been detected under wet conditions (2 percent). Finally, this study suggests that individual drought types (meteorological, hydrological, agricultural) do not appropriately arrest the drought severity, hence, the usage of multiple droughts based composite index can be more realistic for effective drought assessment and monitoring in hydrologic systems.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.