A Smooth Transition Autoregressive Model for Matrix-Variate Time Series

IF 1.9 4区 经济学 Q2 ECONOMICS
{"title":"A Smooth Transition Autoregressive Model for Matrix-Variate Time Series","authors":"","doi":"10.1007/s10614-024-10568-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we present a new approach for modelling matrix-variate time series data that accounts for smooth changes in the dynamics of matrices. Although stylized facts in several fields suggest the existence of smooth nonlinearities, the existing matrix-variate models do not account for regime switches that are not abrupt. To address this gap, we introduce the matrix smooth transition autoregressive model, a flexible regime-switching model capable of capturing abrupt, smooth and no regime changes in matrix-valued data. We provide a thorough examination of the estimation process and evaluate the finite-sample performance of the matrix-variate smooth transition autoregressive model estimators with simulated data. Finally, the model is applied to real-world data.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"58 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10568-7","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new approach for modelling matrix-variate time series data that accounts for smooth changes in the dynamics of matrices. Although stylized facts in several fields suggest the existence of smooth nonlinearities, the existing matrix-variate models do not account for regime switches that are not abrupt. To address this gap, we introduce the matrix smooth transition autoregressive model, a flexible regime-switching model capable of capturing abrupt, smooth and no regime changes in matrix-valued data. We provide a thorough examination of the estimation process and evaluate the finite-sample performance of the matrix-variate smooth transition autoregressive model estimators with simulated data. Finally, the model is applied to real-world data.

矩阵变量时间序列的平滑过渡自回归模型
摘要 本文提出了一种新的矩阵变量时间序列数据建模方法,该方法考虑了矩阵动态的平滑变化。尽管多个领域的典型事实表明存在平滑非线性,但现有的矩阵变量模型并不考虑非突变的制度转换。为了弥补这一缺陷,我们引入了矩阵平稳过渡自回归模型,这是一种灵活的制度转换模型,能够捕捉矩阵值数据中突然、平稳和无制度变化的情况。我们对估计过程进行了深入研究,并利用模拟数据评估了矩阵变量平稳过渡自回归模型估计器的有限样本性能。最后,我们将该模型应用于现实世界的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Economics
Computational Economics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.00
自引率
15.00%
发文量
119
审稿时长
12 months
期刊介绍: Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信