Emily Nicole Holy, Elizabeth Li, Anjan Bhattarai, Evan Fletcher, Evelyn R. Alfaro, Danielle J. Harvey, Benjamin A. Spencer, Simon R. Cherry, Charles S. DeCarli, Audrey P. Fan
{"title":"Non-invasive quantification of 18F-florbetaben with total-body EXPLORER PET","authors":"Emily Nicole Holy, Elizabeth Li, Anjan Bhattarai, Evan Fletcher, Evelyn R. Alfaro, Danielle J. Harvey, Benjamin A. Spencer, Simon R. Cherry, Charles S. DeCarli, Audrey P. Fan","doi":"10.1186/s13550-024-01104-7","DOIUrl":null,"url":null,"abstract":"Kinetic modeling of 18F-florbetaben provides important quantification of brain amyloid deposition in research and clinical settings but its use is limited by the requirement of arterial blood data for quantitative PET. The total-body EXPLORER PET scanner supports the dynamic acquisition of a full human body simultaneously and permits noninvasive image-derived input functions (IDIFs) as an alternative to arterial blood sampling. This study quantified brain amyloid burden with kinetic modeling, leveraging dynamic 18F-florbetaben PET in aorta IDIFs and the brain in an elderly cohort. 18F-florbetaben dynamic PET imaging was performed on the EXPLORER system with tracer injection (300 MBq) in 3 individuals with Alzheimer’s disease (AD), 3 with mild cognitive impairment, and 9 healthy controls. Image-derived input functions were extracted from the descending aorta with manual regions of interest based on the first 30 s after injection. Dynamic time-activity curves (TACs) for 110 min were fitted to the two-tissue compartment model (2TCM) using population-based metabolite corrected IDIFs to calculate total and specific distribution volumes (VT, Vs) in key brain regions with early amyloid accumulation. Non-displaceable binding potential ( $$ {BP}_{ND})$$ was also calculated from the multi-reference tissue model (MRTM). Amyloid-positive (AD) patients showed the highest VT and VS in anterior cingulate, posterior cingulate, and precuneus, consistent with $$ {BP}_{ND}$$ analysis. $$ {BP}_{ND} $$ and VT from kinetic models were correlated (r² = 0.46, P < 2 $$ {e}^{-16})$$ with a stronger positive correlation observed in amyloid-positive participants, indicating reliable model fits with the IDIFs. VT from 2TCM was highly correlated ( $$ {r}^{2}$$ = 0.65, P < 2 $$ {e}^{-16}$$ ) with Logan graphical VT estimation. Non-invasive quantification of amyloid binding from total-body 18F-florbetaben PET data is feasible using aorta IDIFs with high agreement between kinetic distribution volume parameters compared to $$ {BP}_{ND} $$ in amyloid-positive and amyloid-negative older individuals.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"292 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-024-01104-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Kinetic modeling of 18F-florbetaben provides important quantification of brain amyloid deposition in research and clinical settings but its use is limited by the requirement of arterial blood data for quantitative PET. The total-body EXPLORER PET scanner supports the dynamic acquisition of a full human body simultaneously and permits noninvasive image-derived input functions (IDIFs) as an alternative to arterial blood sampling. This study quantified brain amyloid burden with kinetic modeling, leveraging dynamic 18F-florbetaben PET in aorta IDIFs and the brain in an elderly cohort. 18F-florbetaben dynamic PET imaging was performed on the EXPLORER system with tracer injection (300 MBq) in 3 individuals with Alzheimer’s disease (AD), 3 with mild cognitive impairment, and 9 healthy controls. Image-derived input functions were extracted from the descending aorta with manual regions of interest based on the first 30 s after injection. Dynamic time-activity curves (TACs) for 110 min were fitted to the two-tissue compartment model (2TCM) using population-based metabolite corrected IDIFs to calculate total and specific distribution volumes (VT, Vs) in key brain regions with early amyloid accumulation. Non-displaceable binding potential ( $$ {BP}_{ND})$$ was also calculated from the multi-reference tissue model (MRTM). Amyloid-positive (AD) patients showed the highest VT and VS in anterior cingulate, posterior cingulate, and precuneus, consistent with $$ {BP}_{ND}$$ analysis. $$ {BP}_{ND} $$ and VT from kinetic models were correlated (r² = 0.46, P < 2 $$ {e}^{-16})$$ with a stronger positive correlation observed in amyloid-positive participants, indicating reliable model fits with the IDIFs. VT from 2TCM was highly correlated ( $$ {r}^{2}$$ = 0.65, P < 2 $$ {e}^{-16}$$ ) with Logan graphical VT estimation. Non-invasive quantification of amyloid binding from total-body 18F-florbetaben PET data is feasible using aorta IDIFs with high agreement between kinetic distribution volume parameters compared to $$ {BP}_{ND} $$ in amyloid-positive and amyloid-negative older individuals.
EJNMMI ResearchRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍:
EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies.
The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.