Brynne E. Lazarus, Matthew J. Germino, Marie‐Anne de Graaff
{"title":"Nontarget effects of pre‐emergent herbicides and a bioherbicide on soil resources, processes, and communities","authors":"Brynne E. Lazarus, Matthew J. Germino, Marie‐Anne de Graaff","doi":"10.1111/rec.14140","DOIUrl":null,"url":null,"abstract":"Community‐type conversions, such as replacement of perennials by exotic annual grasses in semiarid desert communities, are occurring due to plant invasions that often create positive plant–soil feedbacks, which favor invaders and make restoration of native perennials difficult. Exotic annual grass control measures, such as pre‐emergent herbicides, can also alter soil ecosystems directly or indirectly (i.e. via the plant community), yet there are few studies on the topic in natural, non‐cropped landscapes. We asked how spray treatments applied to soil post‐fire with the intention of inhibiting invasive annual grasses (such as <jats:italic>Bromus tectorum</jats:italic> L.) and releasing existing native perennial grasses affected soil resources, a microbial process, and invertebrates in three climatically varied sagebrush steppe sites. Spray treatments included chemical herbicides (imazapic and rimsulfuron) that strongly affected plant communities and a bioherbicide (<jats:italic>Pseudomonas fluorescens</jats:italic> strain D7) that did not. Chemical herbicides increased soil mineral nitrogen in proportion to their negative effects on plant cover for 2 years after treatments in all sites and increased soil water and net N mineralization (measured at one site) but did not affect total carbon, nitrogen, or organic matter. Invertebrate responses to herbicides varied by site, and invertebrates increased with chemical herbicides at the highest, wettest site. We show that herbicide treatments can exacerbate pulses of mineral nutrients, which previous studies have shown can weaken ecosystem resistance to invasion. Thus, restoration strategies that increase the likelihood that desired plants can capture mineralized nutrients after herbicide application will likely be more successful.","PeriodicalId":54487,"journal":{"name":"Restoration Ecology","volume":"14 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/rec.14140","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Community‐type conversions, such as replacement of perennials by exotic annual grasses in semiarid desert communities, are occurring due to plant invasions that often create positive plant–soil feedbacks, which favor invaders and make restoration of native perennials difficult. Exotic annual grass control measures, such as pre‐emergent herbicides, can also alter soil ecosystems directly or indirectly (i.e. via the plant community), yet there are few studies on the topic in natural, non‐cropped landscapes. We asked how spray treatments applied to soil post‐fire with the intention of inhibiting invasive annual grasses (such as Bromus tectorum L.) and releasing existing native perennial grasses affected soil resources, a microbial process, and invertebrates in three climatically varied sagebrush steppe sites. Spray treatments included chemical herbicides (imazapic and rimsulfuron) that strongly affected plant communities and a bioherbicide (Pseudomonas fluorescens strain D7) that did not. Chemical herbicides increased soil mineral nitrogen in proportion to their negative effects on plant cover for 2 years after treatments in all sites and increased soil water and net N mineralization (measured at one site) but did not affect total carbon, nitrogen, or organic matter. Invertebrate responses to herbicides varied by site, and invertebrates increased with chemical herbicides at the highest, wettest site. We show that herbicide treatments can exacerbate pulses of mineral nutrients, which previous studies have shown can weaken ecosystem resistance to invasion. Thus, restoration strategies that increase the likelihood that desired plants can capture mineralized nutrients after herbicide application will likely be more successful.
期刊介绍:
Restoration Ecology fosters the exchange of ideas among the many disciplines involved with ecological restoration. Addressing global concerns and communicating them to the international research community and restoration practitioners, the journal is at the forefront of a vital new direction in science, ecology, and policy. Original papers describe experimental, observational, and theoretical studies on terrestrial, marine, and freshwater systems, and are considered without taxonomic bias. Contributions span the natural sciences, including ecological and biological aspects, as well as the restoration of soil, air and water when set in an ecological context; and the social sciences, including cultural, philosophical, political, educational, economic and historical aspects. Edited by a distinguished panel, the journal continues to be a major conduit for researchers to publish their findings in the fight to not only halt ecological damage, but also to ultimately reverse it.